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ABSTRACT

This study presents _he development and methodology_ for

development of full-authority implicit model-following and

explicit model-following optimal controllers for use on

helicopters operating in the Nap-of-the Earth (NOE) environment.

The controllers were designed based on NOE handling qualities

requirements and the longitudinal dynamics of the conventional

AH-IG and the AH-IG fitted with a simplified longitudinal

....auxil-i-ary propulsion system. Pole placement, input-output

frequency response, and step input response were used to evaluate

handling qualities performance. The pilot was equipped with

velocity-command inputs.

A mathematical/computational "trajectory optimization" method

was employed to evaluate the ability of each controller to fly NOE

maneuvers. The method determines the optimal swashplate and

thruster input histories from the helicopter's dynamics and the

prescribed geometry and desired flying qualities of the maneuver.

Minimization of a cost function which incorporates these dynamic,

geometric, and flying qualities constraints resulted in the

optimal control histories. From the contrDl law for each

controller, these optimal helicopter control histories were used

to-J'beck out"-the pilot input histories. The helicopterstate

histories and pilot input histories were used to evaluate the

controllers in terms of their abilities to meet the flying

qualities criteria and to minimize pilot workload; pilot workload

j i _ J
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was measured by the integral cost of stick input rates. The

method avoids the time and cost constraints, and biases,

associated with piloted simulation studies.

Three maneuvers were investigated for both the implicit and

explicit controllers with and without auxiliary propulsion

installed: pop-up/dash/descent, bob-up at 40 knots, and

glideslope. -The pop-up and bob-up clearly showed the advantages.

that the use of auxiliary propulsion has in reducing the time to

complete a task and in providing increased longitudinal

acceleration/deceleration while not requiring exoessive pitch

attitudes.

The explicit controller proved to be superior to the implicit

controller in performance and ease of design. T_e design syt4_esi_-

_showed that, in most cases, it was necessary only to weight the

.....diagonal elements of the state and control weighting matrices;

guidelines for selecting these elements is included in the study.

Pilot inputs using the explicit controller were smooth, decoupled,

_-and in proportion to the desired horizontal and vertical

velocities of the helicopter.

ii



TABLEOF CONTENTS

ABSTRACT .

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF TABLES

iii

iv

viii

LIST OF FIGURES

NOMENCLATURE

ix

xiii

Chapter

I. INTRODUCTION

Page

Background and Motivation for this Study .

Definition of Handling Qualities and Agility

Overview of this Study

II. THE NOE ENVIRONMENT

i

2

3

General Attributes of NOE Missions/Maneuvers

Typical NOE Maneuvers

Desired NOE Flying Qualities

Pitch Attitude Constraint

Acceleration/Deceleration Requirements

_RECEDING PAGE BLANK NOT FIL_F-[..'

iv



Potential Benefits of Auxiliary Propulsion

Handling Qualities and Controller Selection .

Ill. CONTROLLER DEVELOPMENT 14

Linearized Equations of Motion

Design Objectives

Linear Quadratic Optimal Controllers

Implicit Model-Following Controller

Explicit Model-Following Controllers

Other Controller Structures

Gain Scheduling

IV. CONTROLLER AND AUXILIARY PROPULSOR EVALUATION .

Method of Evaluation

Trajectory Optimization Method

Flying Qualities and Pilot Workload

Pilot Input Histories

Implicit Model

Explicit Model

Assessment of Pilot Workload

14

15

17

20

24

28

29

31

31

31

32

35

35

37

38

V. THE TRAJECTORY OPTIMIZATION METHOD 40

Formal Mathematics

Interpretation for Helicopter Trajectories

Dynamic Constraint

Inclusion of Position States

Inclusion of Auxiliary Propulsion

Control Rate Limits

Flying Qualities Constralnts

Interior and Final Point Constraits

Control Constraints

Optimality Conditions

Algorithm

Inputs

State Integration

40

46

47

47

47

48

51

52

53

54

55

57

61

V



Cost Calculation

Adjoint Integration

Control Saturation Adjoint Vector

Control gradient Calculation

Control Perturbation

Selecting Fraction Vector k .

62

62

63

63

64

66

APPLICATION AND RESULTS

VI. CONTROLLERS FOR THE AH-IG TRIMMED AT HOVER 72

VII.

Dynamics of the AH-IG and the Handling

Qualities Model

Inclusion of the Auxiliary Thruster

Implicit Model-Following Controller

Designs Including Auxiliary Propulsion

Designs Without Auxiliary Propulsion

Explicit Model-Following Controller

Designs Without Auxiliary Propulsion

Designs Including Auxiliary Propulsion

SELECTED NOE TRAJECTORIES

73

74

75

75

77

78

78

80

103

Vlll.

Bob-up/Dash/Descent 103

Pop-up at 60 Knots 107

Glideslope Ii0

Example of Path Evolution using Trajectory

Optimization . 112

EVALUATION OF IMPLICIT AND EXPLICIT CONTROLLERS 132

Pop-up Maneuver

Without Auxiliary Propulsion

With Auxiliary Propulsion

Bob-up Maneuver

Without Auxiliary Propulsion

With Auxiliary Propulsion

132

132

133

133

133

134

vi



Glideslope Maneuver

Without Auxiliary Propulsion

With Auxiliary Propulsion

134

134

135

IX. CONCLUSIONSAND RECOMMENDATIONS 149

Appendix

A. Linearization of the Equations of Motion 152

B. AH-IG Stability/Control Derivatives and Scheduling 159

C. Solution of the Steady-state Matrix Riccati Eqn 164

D. Controller Gains at All Trim Points 165

REFERENCES 174

vii



Table 2-I

Table 7-I

Table 7-2

Table 7-3

Table 8- I

LIST OF TABLES

Handling qualities criteria for

velocity-command controller

Pop-up/Dash/Descent Maneuver Specifications

Bob-up Maneuver Specifications

Glideslope Maneuver Specifications

Pilot Workloads for all Controllers and

all Maneuvers

page

13

105

108

IIi

136

viii



LIST OF FIGURES

Figure 2-1

Figure 3-1

Figure 3-2

Figure 3-3

Figure 5-I

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

page

Available acceleration vs airspeed

Longitudinal Body Axis System 15

Implicit Model Controller Block Diagram 24

Explicit Model Controller Block Diagram 28

Actuator Lags 50

Flow Diagram Trajectory Optimization Algorithm 56

Flow Diagram for Fraction Vector Search 65

Two-dimensional Gradient Search Vector Example 68

Possible Search Vector Orientations in a Plane 71

Implicit Controller, hover, aux prop on, u-command

frequency response 85

Implicit Controller, hover, aux prop on, u-command

step response 86

Implicit Controller, hover aux prop on, w-command

frequency response 87

Implicit Controller hover aux prop on, w-command

step response 88

Implicit Controller hover aux prop off, u-command

frequency response 89

Implicit Controller, hover a_x prop off, u-command

step response 90

Implicit Controller hover aux prop off, w-command

frequency response 91

Implicit Controller, hover aux prop off, w-command

step response 92

ix



Figure 6-9 Explicit Controller, hover, aux prop off, u-command

frequency response 93

Figure 6-10

Figure 6-11

Explicit Controller hover, aux prop off, u-command

step response 94

Explicit Controller hover, aux prop off, w-command

frequency response 95

Figure 6-12

Figure 6-13

Explicit Controller hover, aux prop off, w-command

step response 96

Explicit Controller hover, aux prop_on, u-command
frequency response 97

Figure 6-14

Figure 6-15

Figure 6-16

Figure 6-17

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figure 7-7

Figure 7-8

Explicit Controller

step response

Explicit Controller

frequency response

Explicit Controller

step response

hover, aux prop on, u-command

98

hover, aux prop on, w-command

99

hover, aux prop on, w-command

i00

Root Loci versus Q and R, Explicit Controller I01

Pop-up/Dash/Descent Maneuver 104

Bob-up Maneuver 107

Pop-up/Dash/Descent: aux prop off, spacial 113
position and position histories

Pop-up/Dash/Descent: aux prop off, velocities/ 114
pitch rate/attitude histories

Pop-up/Dash/Descent: aux prop off, control 115

input time histories

Pop-up/Dash/Descent: aux prop on, spacial 116

position and position histories

Pop-up/Dash/Descent: aux prop on, velocities/ 117
pitch rate/attitude histories

Pop-up/Dash/Descent: aux prop on, control 118

input time histories

Figure 7-9 Bob-up at 40 knots: aux prop off, spacial

position and position histories

119

x



Figure 7-10

Figure 7-11

Bob-up at 40 knots: aux prop off, velocities/
pitch rate/attitude histories

Bob-up at 40 knots: aux prop off, control
input time histories

120

121

Figure 7-12

Figure 7-13

Figure 7-14

Bob-up at 40 knots: aux prop on, spacial
position and position histories

Bob-up at 40 knots: aux prop on, velocities/
pitch rate/attitude histories

Bob-up at 40 knots: aux prop on, control
input time histories

122

123

124

Figure 7-15

Figure 7-16

Figure 7-17

Glideslope: aux prop off, spacial
position and position histories

Glideslope: aux prop off, velocities/
pitch rate/attitude histories

Glideslope: aux prop off, control
input time histories

125

126

127

Figure 7-18

Figure 7-19

Figure 7-20

Glideslope: aux prop on, spacial
position and position histories

Glideslope: aux prop on, velocities/
pitch rate/attitude histories

Glideslope: aux prop on, control
input time histories

128

129

130

Figure 7-21 Evolution of the Pop-up/Dash/Descent Maneuver
during its optimization

131

Figure 8-1

Figure 8-2

Figure 8-3

Pop-up/Dash/Descent: implicit controller, aux prop
off, pilot input histories 137

Pop-up/Dash/Descent: explicit controller, aux prop
off, pilot input histories 138

Pop-up/Dash/Descent: implicit controller, aux prop
on, pilot input histories 139

Figure 8-4

Figure 8-5

Figure 8-6

Pop-up/Dash/Descent: explicit controller, aux prop
on, pilot input histories 140

Bob-up at 40 knots: implicit controller, aux prop
off, pilot input histories 141

Bob-up at 40 knots: explicit controller, aux prop
off, pilot input histories 142

xi



Figure 8-7

Figure 8-8

Figure 8-9

Figure 8-10

Figure 8-11

Figure 8-12

Figure A-I

Figure B-I

Bob-up at 40 knots: implicit controller, aux prop
on, pilot input histories 143

Bob-up at 40 knots: explicit controller, aux prop
on, pilot input histories 144

Glideslope: implicit controller, aux prop
off, pilot input histories 145

Glideslope: explicit controller, aux prop

off, pilot input histories 146

Glideslope: implicit controller, aux prop

on, pilot input histories 147

Glideslope: explicit controller, aux prop

on, pilot input histories 148

Body Axis System 158

Trim Points in the U-W Plane 163

xii



A

AC

AH

B

B
is

is

COS

C

C
#

C
#
i,i

d

deg

d

e

f

ft

F

g

G

Hz

u

f

u

NOMENCLATURE

stability derivative matrix of open-loop helicopter

Attitude Command

Attitude Hold

control derivative matrix of open-loop helicopter

perturbation longitudinal cyclic swashplate input (inches)

total longitudinal cyclic swashplate position (inches)

cosine

control constraint function

controller feedback or feedforward matrix

element [i.i] of the C matrix
#

differential operator

degrees

perturbation pilot input control vector

2.7182818

function dynamics

feet

state matrix of dynamic handling qualities model

2

gravity; 32.174 ft/sec

control matrix of dynamic handling qualities model

Hertz

Hamiltonian of a cost function

control gradient

control gradient during control saturation

xiii



I

J

k

k

K
u

K
x

K
xu

i

LQR

m

m

M

M ,M ,M
u w q

M 0_,MBIs

n

NA

P

P
1

P
2

PI0

q

Q

F

Q

r

number of specified interior points; moment of inertia

scalar cost function

index element

vector of gradient fractions

cost function control weighting matrix

cost function state weighting matrix

cost function state/control weighting matrix

adjoint operator on system dynamics

Linear Quadratic Regulator

Lagrangian of a cost function

scalar control dimension; helicopter mass

control constraint adjoint vector

perturbation aerodynamic moments about the Y axis
B

pitching moment stability derivatives

pitching moment control derivatives

total aerodynamic moments about the Y axis
B

scalar state dimension; number of discrete entries in

time history

Not Applicable

Riccati matrix; roll rate

Riccati matrix

adjoint matrix for model vector (explicit controller)

Pilot Induced Oscillations

perturbation body axis pitch rate

total body axis pitch rate; cost function state weighting

matrix

augmented state weighting matrix for explicit controller

pilot command dimension; resultant axis in x-y plane
for three-dimensional search routine

xiv



rad

R

RC

S, sec

sin

S

t

t+
i

t-
i

T

U

U

co_

U
com

U

U
max

U
rain

U

V

W

W
corn

W
coin

W

W

W

W
du

radians

cost function control weighting matrix; yaw rate

Rate Command

seconds

sine

adjoint matrix for pilot vector

time

time infinitesimally after t
i

time infinitesimally before ti

perturbation thruster input (inches)

perturbation body axis forward velocity; scalar control

variable

perturbation pilot horizontal velocity command

total pilot horizontal velocity command

helicopter open-loop control vector

upper bound on perturbation control

lower bound on perturbation control

total body axis forward velocity

a variable

perturbation body axis downward velocity

perturbation pilot vertical velocity command

total pilot vertical velocity command

total body axis downward velocity

implicit controller state weighting matrix

implicit controller state/control weighting matrix

implicit controller pilot/control weighting matrix

XV



W
xd

W
uu

W
dd

X

X

x
fd

X
id

X
m

X

X
B

X
I

X
T

X ,X ,X
u w q

Xoc 'XBIs

X

Y

Y

Y
B

Y
I

z

Z

Z
B

Z
I

Z ,Z ,Z
u w q

implicit controller state/pilot weighting matrix

implicit controller control weighting matrix

implicit controller pilot weighting matrix

perturbation body axis forward position; an axis for
the t_ree-dimensional search routine

perturbation helicopter state vector

desired state vector at final time

desired state vector at interior point time

perturbation model state vector

perturbation aerodynamic forces along the X axis; total
B

inertial horizontal position

forward body axis direction

horizontal inertial direction

auxiliary thruster X-force control derivative

X-force stability derivatives

X-force control derivatives

total aerodynamic forces along the X axis
B

perturbation downward body axis position; a variable; an

axis for the three-dimensional search routine

total downward inertial position

sideward body axis direction

sideward inertial direction

an axis for the three-dimensional search routine

perturbation aerodynamic forces along the ZB axis

downward body axis direction

downward inertial direction

Z-force stability derivatives

xvi



ZOc' ZB1 s

Z

a

r 0

B

r T

8

0
c

0
i

e

e
C

f

( )o

()
f

( )
t

()
U

()
uu

()
X

Y

()

()

-1

()

Z-force control derivatives

total aerodynamic forces along the Z axis

partial differential operator

the change in ( )

final state penalty function

handling qualities time-constant

collective actuator lag time-constant

longitudinal cyclic actuator lag time-constant

thruster actuator lag time-constant

perturbation body axis pitch angle

perturbation collective swashplate input (inches)

th .
i Interior point penalty function

total body axis pitch angle

total collective swashDlate position (inches)

damping ratio

trim in the body axis system; value of variable

at time t
o

variable at final time t

partial derivative with respect to t

partial derivative with respect to u

second derivative with respect to

partial derivative with respect to x

vector or matrix transpose

derivative with respect to time

inverse

xvii



L
()

()

left pseudo-inverse

optimal point

xviii



Chapter I

INTRODUCTION

i.i Background and Motivation for this Study

Today's battlefield helicopters need to be highly maneuverable.

In particular, the maneuvers that must be performed for successful

Nap-of-the-Earth (NOE) tasks require a high level of helicopter

agility, good handling qualities, and reasonable levels of pilot

workload. These agility and handling qualities criteria often

dictate both the required response characterisitics of the control

system, and the required acceleration potential of the helicopter.

Such specifications can often only begin to be realized through a

full-authority controller, one that can utilize the full control

power of the helicopter. Additional requirements to rapidly

transition from one point to the next suggests the need for higher

acceleration�deceleration levels, which may make the inclusion of

auxiliary propulsion mandatory.

Motivated by these considerations, the aim of this study was to:

i. define the "operational effectiveness" criteria for NOE

operations;

2. investigate suitable controller structures for

full-authority control of the helicopter which meet the

established criteria and which are sufficiently easy to

design;

3. investigate the advantages incurred by using



auxiliary longitudinal propulsion in NOE operations;

4. introduce a mathematical/computational method for

evaluating the performance of a controller and auxiliary

propulsion system for N0E applications which does not employ

human pilots or pilot models. This method is called the

trajectory optimization method.

1.2 Definitions Of Handling Qualities and Agility

At the onset, it is necessary to define and distinquish several

terms which are used throughout this work.

Handling qualities are "those qualities or characteristics of

an aircraft that govern the ease and precision with which a pilot

is able to perform the tasks in support of the aircraft role."

[14] Agility is "a measure of the ease with which a helicopter

can change its state." [I0]

There is an important distinction between handling qualities

and agility. Handling qualities are allied with the dynamic

response of the helicopter, and as such, handling qualities

criteria define the helicopter's response to a given control

input; quantitatively, they define how the controller should

perform in terms of damping ratio, bandwidth, control

sensitivities, pole/zero locations, control force gradients, et

cetera. Agility is more closely allied with translational motion.

Quantitatively, agility can be measured in terms of particular

aspects of the helicopter's state time histories, most notably its

accelerations. Handling qualities criteria, agility, and pilot

workload are the three measures used to evaluate the performance

of the helicopter and controller over a prescribed mission• These



three measures collectively constitute what may be called the

mission's "operational effectiveness."

1.3 Overview of this Study

This study addresses the application of full-authority optimal

controllers and auxiliary propulsion to helicopter NOEoperations.

Chapter II describes the NOE environment and gives both a

qualitative and quantitative account of the desired flying

qualities and handling qualities within this environment. In view

of these criteria, the advantages of using auxiliary propulsion

are discussed, as is the preferred controller commandstructure.

Chapter III presents the formal development of the explicit

model-following and implicit model-following controller

structures. They are developed using the linearized equations of

motion of the helicopter. Chapter IV explains how the controller

and auxiliary propulsion system are evaluated for a given

maneuver. A trajectory optimization method is used to compute the

optimal helicopter input control histories. The pilot input

histories are found from these control histories and the control

law; pilot workload is measured from the pilot input histories.

Chapter V presents a detailed description of the mathematics and

computational solution for the trajectory optimization method.

The implicit and explicit model-following controllers are

applied to the AH-IG helicopter. The selection of the controller

gains for both of these controller structures, at the hover trim

condition, is presented in Chapter VI. The examples in this

chapter are given for both the conventional helicopter and for the

helicopter equipped with auxiliary propulsion.

3



Three NOE maneuvers are investigated in this study:

bob-up/dash/descent, pop-up at 40 knots, and glideslope. The

optimal control input histories, computed using the trajectory

optimization program, are shown in Chapter VII along with the

histories of the state variables. Finally, in Chapter VIII, the

pilot input histories are shown for each of the three NOE

maneuvers, using both of the controller structures, and for the

helicopter with and without auxiliary propulsion. The

"operational effectiveness" of all of these helicopter/controller

configurations is evaluated in this chapter.

4



Chapter II

THE NOE ENVIRONMENT

2.1 General Attributes of NOE Missions/Maneuvers

The roles of the pilot and helicopter vary in the battlefield

environment. But in general, NOE maneuvers are employed chiefly

to avoid detection by the use of cover. [10,14] The helicopter

moves discretely from one point to the next. Maneuvers may be

elusive, as during air-to-air combat; they may be operational, as

in transporting troops and/or cargo; or they may be of the

scout/attack type, for example air-to-air combat and anti-tank

missions. The latter usually employ target search and weapons

delivery; many employ navigation. A generalized list of necessary

attributes for flying NOE maneuvers is: [10,12,13]

* high dash speed

* good longitudinal/vertical acceleration/deceleration

* small turn radius

* good handling qualities and controllability

* low pilot workload

2.2 Typical NOE Maneuvers

The literature commonly defines a list of'15-20 high and

speed maneuvers descriptive of NOE flight: [10,12,13,15,19,28]

low



Low speed

* precision hover

* taxi

* lateral jink

* rearward flight

* bob-up

* dash

* slalom

* quick-stop

High speed

* box pattern (four turns)

* longitudinal accel/decel

* pull-up/push-over

* turning approach

* straight approach

* lateral accel/decel

* liftoff and landing (including ship deck liftoff/landing)

* pop-up (zero forward velocity)

* hover about a point/masked hover

This work is concerned with the longitudinal degrees of freedom of

the helicopter. We therefore investigate tasks that include the

bob-up and pop-up, dash, quick-stop, longitudinal

acceleration/deceleration, and straight approach maneuvers.

Actually, our purpose in selecting this group of maneuvers is

twofold. This group reflects representative longitudinal

maneuvers, and it also reflects those maneuvers for which

auxiliary longitudinal propulsion is perceived to be most useful.

Sample trajectories are computed and shown in Chapter VII.

The bob-up is usually associated with a quick ascent from

behind tree cover or other terrain cover; pop-ups are like bob-ups

but begin from hover. The dash is a sprint maneuver typically

from fifty feet to a half mile. The dash is most commonly

employed to rapidly transition from one point to another; as such,

it is often accompanied by a quick-stop and descent to hover.



Other longitudinal maneuvers require high speed flight over longer

distances. A typical bob-up maneuver at high speed is obstacle

avoidance, for example in "hurdling" a bridge while flying low

over a river.

2.3 Desired NOE Flying Qualities

Two flying qualities issues stand out as being very important

in NOE flight. These are the pitch attitude constraint and

acceleration/deceleration potential.

2.3.1 Pitch Attitude Constraint

It is important in NOE maneuvers to maintain a desirable pitch

attitude. Most often this attitude is close to zero. These small

pitch attitudes are very important for carrying out secondary

operations, armament and navigation in particular: [10,13]

O For weapons delivery, maintaining near-constant pitch

attitude is crucial for radar "locked on" tolerances.

O Large nose-up and nose-down pitch attitudes are undesirable

for navigation and target search.

O Large pitch forward attitudes raise the the tail rotor

above tree-line, making it easier to be seen and heard.

O Pitching must be small for the pilot to maintain visual

cues.

O There are dangers of tail rotor ground strike and autorota-

tion with excessive nose-up attitudes.

Though there is not universal agreement on exactly what

permissible attitudes for NOE maneuvers, the literature

that pilots prefer nose-down attitudes in the 0 ° to 15 ° range

are the

suggests

and



nose-up attitudes from 0 ° to I0 ° [10,12,19]

2.3.2 Acceleration/Deceleration Requirements

Time is the most important agility parameter. Most tasks are

performed in minimum time, or, at the highest possible

accelerations and decelerations. But because conventional

helicopters require large attitude changes for acceleration and

deceleration, the acceleration/deceleration levels are restrained

because of the pitch attitude constraints outlined above. In a

survey of Army, Navy, and Air Force pilots [10,19], the ability to

accelerate and decelerate -- at higher rates and with less pitch

attitude -- was sighted as the issue in which they would like to

see the biggest improvement.

Figure 2-1 plots acceleration versus airspeed for a typical

helicopter. The plot shows that acceleretion potential decreases

with airspeed. Particularly for battlefield operations, pilots

prefer to have higher acceleration potential across the airspeed

spectrum. The current ABC [25,29] and Tilt-Rotor [28] aircraft

increase the acceleration potential at higher airspeeds. These

programs, and the studies conducted in References i0, 16, 24, 25,

and 29 define the desired potential acceleration level, across all

airspeeds, at 0.3 to 0.5g.



g's .5

.4

.3

.2

.1

desired

actual

I I I _ I
0 50 I00 150 200 250

Airspeed (knots)

Figure 2-1 Available acceleration vs airspeed

(Fisure adapted from References 24 and 25)

2.4 Potential Benefits of Auxiliary Propulsion

In light of these flying qualities criteria, we can predict the

in agility that would result using an auxiliaryimprovement

longitudinal thruster on a

environment. The addition

longitudinal thruster would

helicopter operating in this

of an additional X-force via a

increase available acceleration

levels, so that the acceleration potential of the helicopter looks

like the upper line in Figure 2-1. And, because this X-force is

thruster-generated rather

attitudes are not

acceleration/deceleration

constraints should be met.

Chapters VII and VIII.

than rotor-generated, large pitch

required to achieve greater

levels, so that pitch attitude

These predictions are substantiated in

2.5 Handling Qualities and Controller Selection

As one might expect, there is a direct connection between the

type of maneuver the pilot is expected to perform and the type of

command input which the pilot prefers to have. For the

9



O

longitudinal degrees of freedom, the flight (i.e. state) variables

are the helicopter horizontal and vertical velocities, and pitch

attitude and pitch rate. Numerous studies have investigated

longitudinal controllers with various command inputs. The two

basic configurations are velocity co_nand configurations and

attitude/attitude-rate command configurations. From the

literature available, it is determined that for the types of NOE

maneuvers investigated in this study, pilots prefer velocity

command controllers. The following paragraphs summarize some of

the work found in the literature and explain the rational for

choosing the velocity command controller configuration over

alternative configurations.

The pilot's control over the full longitudinal and

lateral-directional motions of the helicopter typically consists

of four command inputs; pitch, roll, yaw, and vertical command

inputs. For longitudinal motion, these inputs reduce to the pitch

and vertical command inputs. Although more (or fewer) pilot

inputs may be defined, two inputs is the most efficient for

control within this horizontal-vertical plane. Ideally, one input

should control vertical motion, and one input should control

horizontal motion. [6,11,12,13,15,28]

Most NOE tasks require the pilot to govern the speed and

position of the helicopter; other tasks, notably air-to-alr

combat, require attitude control. It is, 6f course, logical to

equip the pilot with command inputs that will best enable him to

perform the tasks at hand. For the maneuvers of interest in this

study, which are velocity/position based, we find that pilots

prefer a rate (velocity) command controller, with possible
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modifications. The results from a literature review of controller

structures for NOE tasks, outlined below, show that velocity

commandsystems are best for maneuvering, and attitude command

systems are best for precision hover tasks.

References 17, 28, and 31 conclude that pilots prefer velocity

commandover attitude command(AC) for tracking tasks. Typically,

both velocity commandand attitude commandsystems have a vertical

velocity commandas one input; for the other input, the velocity

commandsystem uses a horizontal velocity commandand the attitude

commanduses a pitch attitude command. This preference also holds

for low speed precision pointing tasks; reference 19 found that an

AC controller degraded the helicopter's handling qualities during

precision pointing tasks. The study conducted in that reference

also found that the addition of attitude hold (AH) to the velocity

commandcontroller results in a high level of agility, as measured

by achievable rates and accelerations.

For chase and aquisition, reference 31 finds that pilots prefer

the velocity controller. For these types of tasks, the large

stick inputs necessary with the AC controller are found to be

objectionable; the AC controller is preferred for tasks where

precision maneuvering is critical. This reference, and references

Ii, 13, and 15 note that the best handling qualities are achieved

when the two velocity commandsin the the velocity system are

decoupled; decoupled contols is highly desirable for good handling

qualities. Hence, the study conducted in this thesis uses an

velocity controller.

With the control structure thus defined, it was then possible

to set some quantitative response criteria for the velocity
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define applicable

helicopters.

At the onset,

controller that would result in good handling qualities. Many of

the defining handling qualities criteria used in this work were

taken from the Army's Advanced Digital'Optical Control System

(ADOCS) program. [11,15] This control system is being designed to

provide satisfactory handling qualities for attack helicopters.

The ADOCS report itself includes an extensive literature search to

handling qualities criteria for attack

the two velocity command inputs should be

decoupled, and should produce responses that closely approximate

the outputs of two first-order systems. Specifications for the

two first order time-constants vary strongly according to pilot

and task, but the literature generally agrees that the accepted

range for the vertical response time constant is from I to 4

seconds, while the horizontal response time-constant ranges from 2

to 5 seconds. [11,13] When a first-order response cannot be

achieved, a second-order response should have a damping ratio

equal to or greater than 0.7; the minimum acceptable damping ratio

is 0.5.

The input frequency band of concern does not vary greatly among

the references [11,13,15,18,20], and thus the band was taken to be

from 0 to I Hz (6.26 radians/second). In addition, the transfer

function phase response should follow that of a first-order

system, with a suitable time-constant as specified above. Too

much phase shift can result in pilot induced oscillations (PIO).

[20]

For the velocity-command controller, the vertical velocity

command input sensitivity should range from 13 to 16 ft/sec per

12



inch of stick, for the vertical response time-constants listed

above. [11,13]; the horizontal velocity input sensitivity ranges

from 12 to 16 ft/sec per inch, for the related time-constants.

This range is again due to the variation in tasks from which these

data were taken. These inputs should not produce pitch

accelerations in the helicopter which exceed 0.69 rad/s 2.

The handling qualities criteria are summarized in Table 2-1

below:

first-order

time-constant

dampin8 ratio

minimum

damping ratio

bandwidth

control

sensitivity

maximum

pitch rate

sensitivity

horizontal vertical

velocity velocity

command command

2-5 sec 1-.5 sec

>__ O.7 >_ 0.7

0.5 0.5

0-6 rad/s 0-6 red/s

12-16 ft/s/inch

.69 red/s/inch

13-15 ftlslinch

.69 rad/s/inch

Table 2-I

Handling qualities criteria for velocity-command controller
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Chapter III

CONTROLLER DEVELOPMENT

3.1 Linearized Equations of Motion

Aircraft performance analyses and controller development are

commonly accomplished using the linearized equations of motion of

the vehicle about a trim point. These linearized equations can

very closely approximate the total nonlinear equations of motion,

and are much easier to use in application. In addition,

linearized numerical data for many aircraft is readily available.

The controller development methods and trajectory optimization

procedure of this study utilized the helicopter's linearized

equations of motion. All numerical data was derived for the AH-IG

helicopter, which typifies helicopters that are used for the roles

discussed in this study.

Appendix A reviews the procedure and assumptions used in the

linearization of the helicopter's nonlinear equations of motion.

It is shown below that the helicopter's total state variables are

the sums of the trim states and the linearized (perturbation)

states. Appendix B contains the numerical (linearized) stability

and control derivatives for the AH-IG a_. twenty-two trim points

from reference i. A realistic representation of the helicopter

states at all points and times in space requires that these

derivatives be scheduled between trim points. Appendix B

discusses how these data are scheduled according to flight

condition.

14



The speed, position, acceleration, and orientation of the

helicopter are described in terms of its nominal (trim) and

perturbation state variables. Figure 3-1 shows the total and

perturbation states of the helicopter. Because of the small angle

assumption used in the linearization of the equations of motion,

the total state variables U, W, Q, and e are the sums of their

trim values (U , W , Q , 0 ) and perturbation values (u, w, q, 8).
0 0 0 0

Since perturbation positions (x and y) are measured along the

trimmed body axis, their contribution to the total inertial

referenced positions must take into account the trim attitude 0 .
O

Therefore,

X = X + xcos8 and Y = Y + ysin8 .
0 0 0 0

-y
0

e__u,x

helicopter -> ------

o

Q
o

g

II x I
o

Figure 3-1 Longitudinal Body Axis System

3.2 Design Objectives

The objective of this study was to design a controller for

helicopters that perform NOE tasks, or other demanding tasks,

utilizing the full available control power of the helicopter.

Such a controller is a "full-authority" controller, one which is

15



capable of exploiting the full control potential of the

helicopter, rather than one which limits the controls to less than

their full range of travel (as is often done in

stability-augmentation systems). There are numerous controller

structures which can potentially fit this bill. For controller

design using the helicopter's linearized equations of motion,

several popular and promising controller structures are those

referred to as linear-quadratic optimal controllers_

A suitable controller structure is one that satisfies the

prescribed input/output response criteria (handling qualities

criteria). But it is also of concern that the controller be

sufficiently easy to design , and that it is adaptable to changing

flight conditions (i.e., easy to schedule within the flight

envelope). Linear-quadratic implicit and explicit model-following

optimal controllers prove to meet these requirements.

Pilots have shown favor_!e responses in studies conducted on

aircraft using model-following controller structures. Reference

18 shows that pilots rated model-following better than response

feedback mode control, producing respective Cooper-Harper ratings

of 3 versus 3.5. The pilots described a sense that the

model-follower controller was "locking on" when it was engaged.

Reference 17 also notes pilots' preferences for model-following

over response feedback control because of the ability of the

model-following system to provide inter-axis'control to compensate

for undesirable cross-coupling affects in the vertical and

horizontal axes.

The ADOCS program [11,13] used a model-following concept to

achieve the desired command responses. In that study, classical

16



control methods were used to design feedback paths that met the

stability requirements. However, based on the desired

command/responsecharacteristics, a commandreponse model was used

to provide the desired response. It achieved good pilot ratings,

falling within Level i of the Cooper-Harper ratings scale. This

feedforward commandaugmentation and shaping performs the same

function as the feedforward gains of the model-following

controllers presented below. The feedforward structure provides

control mixing (to achieve decoupled modes) and prefiltering, but

does not affect the level of feedback stabilization. The

model-follower structure also facilitates easy flight condition

scheduling.

3.3 Linear-Quadratic Optimal Controllers

The method employed in the design of optimal controllers is to

minimize a predetermined cost function, subject to the system's

dynamic constraint, for the purpose of generating an optimal

control law, i.e., an optimal relationship between the states and

controls, that gives the resulting closed-loop system the desired

control/response characteristics. The general method is to

define, from the cost function and system dynamics, the equations

that establish necessary and sufficient conditions for minimum

cost. [2,4] The necessary conditions are derived by equating the

cost function's linear sensitivity to zero" through a procedure

known as the Calculus of Variations. The cost function is

typically comprised of a final state penalty and an integral

penalty function of the state and control. Parameters of the

integrand, or Lagrangian (£), define the nature of the optimizing

17



solution. The cost function is written as:

J - _[x(tf),tf] + _tf_[x(t),u(t),t]dt

t

O

(3-1)

The system dynamics: = f[x(t),u(t),t] (3-2)

and initial condition: x(t ) - x (3-3)
O O

must be satisfied while J is being minimized.

to this "dynamic constraint," these dynamics are adjoined

cost function via an adjoint (or influence) vector l(t).

J = _[x(tf),tf] + _if{£[x(t),u(t),t]
o

+ IT(t){f[x(t),u(t),t]-X(t))}dt (3-4)

To assure adherence

to the

f[x(t),u(t),t]-x(t) is adjoined to the integrand because it must

be satisfied over the entire interval <t ,t >. And because it
o f

equals zero when satisfied, the numerical value of J is not

changed, l(t), then, acts as an influenc_ function, and expresses

the cost function's sensitivity to dynamic effects.

The Hamiltonian, H, of the integrand is defined as:

_[x(t),u(t),t] - _[x(t),u(t),t] + 1T(t)f[x(t),u(t),t] (3-5)

and J can be rewritten as

4[x(tf),tf] + [jtf [x(t),u(t),t] -
J dt

O_

q

(Explicit reference to time is dropped here; variables

final time tf are denoted by the subscript z).

Using the Calculus of Variations, three necessary

derived from the cost function. These are:

(3-6)

at the

conditions are

18



(a_)T
i. 0 = _ (3-7a)

aH T

2. i = (- _) (3-7b)

3. iT -84 )Tf " (aT (3-70)
£

These equations are also known as the Euler-Lagrange equations.

When satisfied, the Hamiltonian is stable for infinitesimal

control variations. These conditions are therefore local, rather

than global criteria The sufficient condition is that _ >0.• uu

For linear-quadratic cost functions (defined below) _ >0 is
' uu

guaranteed to be satisfied. Therefore, the formal mathematics for

this sufficient condition are not pursued here.

Inspection of Equations 3-2 and 3-3 and Equations 3-7b and 3-7c

shows that this optimization problem is two-point boundary value

problem; the state integration constants are specified at t and
O

the adjoint integration constants are specified at tf.

For linear-quadratic controllers, the dynamics are linear and

the Lagrangian consists of weighted quadratic norms. A

quadratic, time-invariant, final state penalty takes the form

- x_Pfxf, and the third Euler-Lagrange equation becomes if -_[xf]

Pfxf. However, the integration interval is taken from 0 to t£, as

t approaches infinity. This means that the final state penalty
f

is presumably insignificant. [4] With this in mind, and recalling

that 1 and x are adjoint and therefore Hold over the entire

interval <0,_>, we drop the final time subscript for the third

Euler-Lagrange equation, and now have a more suitable, yet wholely

correct, condition that 1 - Px.

The sufficient condition, _ >0, is guaranteed to be satisfied
uu
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for quadratic cost functions as long as the weighting matrices are

positive-definite. The elements of the weighting matrices are

parameters that are chosen to meet the closed-loop response

criteria; a an/4a_ optimal controller results for _ se/ of

weighting matrices chosen for the giver system dynamics. The

relationship of weighting matrices parameters and control

objectives is not direct nor is parameter selection intuitive.

However, linear-quadratic model-following optimal controllers

prove to be easy to develop because one usually needs only to

adjust the diagonal elements of the weighting matrices, and

perhaps an off-diagonal element for obviously coupled variables.

3.4 Implicit Model-Following Controller

The system (in our case, the helicopter) is described by the

dynamics: x - Ax + Bu

where for our application

x = u and

W

(3-8)

U (3-9)

and A and B are the stability and control derivative matrices,

respectively. Note that we include an auxilary longitudinal

thrust control, T (inclusion of T does not alter the derivation).

The model, whose state response (x) to control inputs (d) we
m

want the system (helicopter) to emulate, is expressed as

- Fx + Gd (3-10)
m

where x is the plant state vector as given above and d is the

vector of (pilot) inputs. For the velocity-command controller, d

contains horizontal and vertical commands:
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d i
Uco m

Wco m

(3-11)

This is an implicit model-follower structure because the error

-- in this case, the rate error -- between the system and the

model is penalyzed in_ the cost function, rather than as part

of the control system in the closed-loop system dynamics. [9,21]

The cost function is:

I ={(X'Xm)TQ(x'x m }J ffi _ ) + uTRu + IT(Ax+Bu) ITs dt (3-12)
0

where x and x are n x 1, Q is n × n, u is m × 1, and R is m × m.
m

Substituting for x and x from Equations 3-7 and 3-8,
m

J= I_o_{(Ax+Bu-Fx-Gd)TQ(Ax+Bu-Fx-Gd) + uTRu}dt

= _ (xT[A-F]T+uTBT-dTGT)Q([A-F]x+Bu-Gd) + U T dt
0

T(A.F)TQ(A_F)x + uT(BTQB+R)u + dTGTQGd
=2 °

+ 2xT(A-F)TQBu 2xT(A-F)TQGd - 2dTGTQBu}dt
(3-13)

Using the following definitions,

W = (A-F)TQ(A-F) W = (A-F)TQB W = CTQB
XX XU du

T

W = (A-F) QG W = BQB+R W - CQG
xd uu dd

(3-14)

the cost function becomes

12_XTWxx
J = x + UTW U + dTw d + 2xTw U - 2xTW d

uu dd xu xd

2dTWduU + IT(Ax+Bu) ITx}dt
(3-15)
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and the Hamiltonian is

2_ T-- X WxxX + UTWuuU + dTWdd d + 2xTWxuU - 2xTWxdd

- 2dTWduU + IT(Ax+Bu)} (3-16)

Employing the three optimality conditions, we have

a_.T W T x - W TI. 0 - (:--) = W u + d + =lot (3-17)
uu Xu du

2. i -8_. T
- (--_) - -Wxxx WxuU + Wxdd - ATI (3-18)

At this point we observe that the integrand contains the

variables i, u, x, and d. Therefore, we revise the algebraic

expression for I to include effects of the model input d. This is

done by adding a linear inhomogeneous term to the (linear)

homogeneous expression for i from the previous section [22]:

3. i - Px - Sd (3-19)

P is n x n and S is n × r. Solving Equation 3-15 for u yields

_ W Tu -W-I(W T x d + BTI)
uu xu du

(3-20)

Using Equation 3-19 we substitute for i in Equation 3-20 to obtain

the optimal control law in terms of the desired variables x and d:

_ W _u -W-I(W T x d + BTPx BTSd)
uu xu du

_ _W-I(W T +BTp)x + W'I(W T + BTs)d
uu xu uu du

(3-21)

- -C x + C d (3-22)
1 2

The expressions for P and S are found from the dynamic equation

for i. Sustituting u from Equation 3-21 and 1 from Equation 3-19

22



into Equation 3-18, we have

i - -w x - w [-w-l(w T +BTP)x+W-I(W T +BTs)d] + W d -AT(Px-Sd)
xx xu uu xu uu du xd

- [-W +W W-IW T +W W-IBTP]x
XX XU UB XU XU UU

+ [-W W-IW T -W W-IBTs+w +ATs]d
xu uu du xu uu xd

(3-23)

Taking the derivative of Equation 3-19 with respect to time, and

noting that the best estimate of d is zero (since it is

unpredictable [22]), we have

i - Px + ex - Sd (3-24)

Substituting for x from Equation 3-8 and then for u from Equation

3-21, and collecting like terms, Equation 3-24 becomes

i = [P+PA-PBW-IW T -PBW-IBTP]x
UU XU UU

+ [PBW'IW T +PBW-IBTS._]d
UU du uu

(3-25)

Equating the right hand sides of Equations 3-23 and 3-25, and

recognizing that, for minimum cost, the resulting equation will

hold true irrespective of the values of x and d, we generate two

separate equations by equating the coefficients of x and the

coefficients of d in these equations:

-_p[A_BW-IW T ]
UU X U

[A_BW-IW T ]Tp
UU XU

+ [-W +W W-IW T ] + P[BW-IBT]P
XX XU UU XU UB

(3-26)

- _[A_BW-IW T ]Ts + P[BW'IBT]s
UU XU UU

+ P[BW-IW T ] [Wxd-W W-IW T ] (3-27)
uu du xu uu du

Equation 3-26 takes the form P - -PM -MTP + PNP + K and is
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recognized to be a matrix Riccati eqt.ation in P. The steady-state

P matrix is solved according to the diagonalization method [26]

outlined in Appendix C. Once P is determined, the §ready-state

solution for S (S - O) is determined from Equation 3-27 using

simple matrix algebra.

Equation 3-22 is the control law for the implicit

model-follower. Substituting this expression for u into the

open-loop dynamics, the closed-loop dynamics are

x = Ax + Bu _ Ax + B(-C x+C d) = (A-BC)x + BC d
i 2 1 2

(3-28)

Figure 3-2 shows a block diagram of the open-loop helicopter, and

the closed-loop helicopter with feedback gains C on the measured
2

states x, and feedforward gains from the pilot inputs d.

closed-loop helicopter
.............. . . . . , ......... , .......... , ° • , , . , , . . . • . , , • • ,

open-loop helicopter
. . , . , , , , , o , . , , , , ...... * ...........

.............. , . . , , , , . , , . . . , , , ° ° , •

x
>

• ...... ° ............. ** ...... ., ............ ° ...... *.°°*.°

Figure 3-2 Implicit Model Controller

3.5 Explicit Model-following Controller

The open-loop dynamics of course do

controller structure, and are again given by

idealized model dynamics are

not depend on

Equation 3-8.
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- Fx + Gd (3-29)
m m

where x is the model state vector and d is the pilot control
m

input vector.

The linear-quadratic cost function for the explicit

model-follower penalizes control excursions and the error between

the actual state and the model state. [2,21]

°{ }J - _ (x-xm)_Q(x-xm) + uTRu + IT(_+Bu) l_i dt (3-30)
0

[xTQx 2xTQx + xTQx ] + (Ax+Bu) ITs dt (3-31)
m m m

0_

Because there are two distinct states, we could define an

augmented state which includes both x and x . The cost function
m

using the augmented state is

 i{x 1j . TQ X + uTRu + IT(Ax+Bu) ITx dt (3-32)

0

[I [ ]where X = x and Q - Q -Q

x .Q Q

Minimization of the cost functions given by Equations 3-31 and

3-32 yield dimensionally different optimality equations. The

resulting control law in each case, however, yields identical gain

coefficients for the state and command vectors x and d.

Derivation of the control law using Equation 3-32 is exactly

analagous to the derivation for linear quadratic regulators (LQR);

this method is not presented here. Instead, the derivation using

the "unaugmented " cost function, Equation 3-31, is used as

perhaps it best shows how the control law depends on x as well as
m

x and d.
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The Hamiltonian is

T i T }= x Qx 2xTQxm+ xTQxmm + uTRu+ (Ax+Bu)

The first two optimality conditions are

(a_)zI. 0 - _-_ = Ru + BTI

2. i - (- _-_ = -Qx + Qx m -AT1

(3-33)

(3-34)

(3-35)

As we did in the implicit model-follower development, we assume a

linear relationship among i and the variables of the integrand

(other than u):

3. i = P x + P x Sd (3-36)
1 2m

From Equations 3-34 and 3-36, the control law is

u = -R-ZBTI = -R-IBT(p x + P x Sd)
1 2 m

-R- IBTp I IBT= x - R- BTp x + R- Sd
1 2 m

(3-37)

= -C x C x + C d (3-38)
I 2 m 3

To find expressions for PI' P2' and

Substituting Equation 3-36 into Equation 3-35:

S, solve for i.

i = -Qx + Qx - AT(P x + P x - Sd)
m 1 2 m

= [-Q ATpI]x + [Q ATPz]Xm + [ATs]d " (3-39)

Taking the derivative of Equation 3-36 with respect to time (and

recognizing that the best estimate of d is zero), we have

i - P x + P x + P x + P x - Sd (3-40)
1 1 2 m 2 m
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Substituting Equation 3-8 for x and Equation 3-29 for x , and then
m

substituting Equation 3-37 for u and collecting terms, we have

i - [PI A+_I +PIBR-IBTPI]x + [PIBR-IBTp2+P2F+Pz]xm

- G-S]d (3-41)+ [PIBR IBTs+p 2

Equating the coefficients of x, x , and d from the right hand
m

sides of Equations 3-39 and 3-41 yields the expressions for PI'

P2' and S :

- -P A ATp + p BR-IBTp Q (3-42)
1 1 1 I I

- -P F ATp + p BR-IBTp Q (3-43)
2 2 2 I 2

= P G - ATS + P BR-IB_S (3-44)
2 1

Equation 3-42 is a matrix Riccati equation; the steady-state

P matrix is solved according to the diagonalization method [26]
1

described in Appendix C. Once P is determined, steady-state P
1 2

is solved from Equation 3-43 via a Kronecker product method [30],

since P premultiplies and postmultiplies other (constant)
2

matrices. With P and P known, steady-state S is solved
I 2

algebraically:

S - [A T - P BR'IBT]-IP G (3-45)
1 2

The block diagram for a helicopter equipp&d with

model-following control law (Figure 3-3) shows that

model acts as a prefilter of pilot inputs d to the

helicopter.

an explicit

the ideal

open-loop
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d .

closed-loop helicopter

°, ...... °°°o.,°,. ....... °...°, ....... °..° ..... °,. ...... o

+

open-loop helicopter

..... 0 . ° 0 ° ..... , ................ . .

...... ° ........ ° ........... °. .... •

Figure 3-3 Explicit Model Controller

x
>

3.6 Other Controller Structures

Other linear-quadratic optimal

investigated In particular,

controller structures were

the proportional-filter and

proportional-integral structures were considered. [2] However,

choosing suitable weighting matrices parameters for these two

structures proved to be a very laborious assignment. Because of

this, and because the

controllers showed no

controllers, they were

structures.

response

improvement

eliminated

characteristics of these

over the model-following

as possible controller
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3.7 Gain Scheduling

The controller gains are derived for the linearized dynamics of

the helicopter about a trim point. As such, they are only

applicable for flight within a region close to this trim

condition. For the controller to be effective throughout the

entire flight envelope, it became necessary to derive gains for

trimmed flight conditions throughout the helicopter's entire

flight envelope, and to schedule the gains between these discrete

trim points. Scheduling is typically done by expressing the gains

as a function of flight condition, e.g., airspeed, advance ratio,

and dynamic pressure. [8] Reference 7 suggests a means to select

the flight variables and the gains which require scheduling by the

use of correlation analysis. Any scheduling method should be

chosen to provide accurate gain values throughout the entire

envelope, while not being overburdening in terms of computation

time and data, or cost.

The data available for this study limits the number of trim

data points to twenty-two. This means that twenty-two sets of

gains have been derived for each controller structure investigated

(see Appendix D). But this limited data set makes it feasible

only to schedule the gains in terms of the most obviously

influential variables, the helicopter's forward and vertical

speeds, U and W. And it is impossible to heuristically argue what

functional dependence the gains have with U and W between trim

points (unlike what can be done for the stability and control

matrices -- see Appendix B). Therefore: the gains are linearly

interpolated and extrapolated using the trim data set.

Figure B-I shows the spread of the data (trim) points in the
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U-Wplane. In this study, a data set contains the value of every

gain element at each of these twenty-two points for each

controller. For each [U,W] pair sampled throughout a trajectory,

the gain elements are scheduled by first interpolating with

respect to U, and then with respect to W. For flight conditions

that put [U,W] outside of these data points, the data is simply

extrapolated out to the [U,W] point.
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Chapter IV

CONTROLLERANDAUXILIARYPROPULSOREVALUATION

4.1 Method of Evaluation

In Chapter I, we expressed the operational effectiveness of the

helicopter/control system as a measure of its ability to perform

its prescribed mission. In the context of this study, we are

specifically concerned about the abilities of the controller and

auxiliary propulsor to meet this goal. System performance, or

operational effectiveness, is described by three primary groups

of criteria: handling qualities and flying qualities, both of

which are outlined in Chapter II for NOE operations, and pilot

workload. The handling qualities criteria are evaluated

coincident with the development of the controllers (Chapter VI),

with one exception, controller sensitivity, discussed below.

Flying qualities and pilot workload must, of course, be evaluated

over a specific maneuver. This study used a "trajectory

optimization" method for evaluating these two categories of

criteria. Use of this method avoids the traditionally subjective

rating method for evaluating pilot workload and contoller

sufficiency.

4.1.1 Trajectory Optimization Method

The trajectory optimization method computes, for a maneuver of

specified time, geometry, and flying qualities, the optimal

helicopter control histories, i.e., the motion of the helicopter's
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physical controls (swashplate and thruster input) throughout the

trajectory. The process is purely mathematical, and is performed

computationally. Flying qualities and the geometry of the

maneuver are incorporated by specifying the helicopter's state

vector at various times throughout the trajectory. Excursions

from these "constraints" are penalyzed according to their

importance, and, using the dynamic equations of motion of the

helicopter, the best (optimal) control input history is

determined. A pilot implicitly performs exactly the same process

in attempting to fly a specified maneuver. [10,12,17,19,33]

Chapter V describes the trajectory optimization process and

algorithm in detail.

4.1.2 Flying Qualities and Pilot Workload

Using the optimal control histories derived from the

optimization, the flying qualities and pilot workload evaluations

were then performed as follows:

I.) If an optimal control history could be found that forced

the helicopter to fly the prescibed trajectory with the prescibed

flying qualities, then we concluded that the helicopter was

capable of achieving these qualities. An inability to meet the

criteria (e.g., minimum transition time) suggested a deficiency in

the helicopter (e.g., lack of sufficient acceleration potential).

2.) From the control law for each controller, we "backed out"

the pilot input time histories. These histories enabled us to

evaluate the controller for satisfactory control sensitivity

(criteria tabulated in Section 2.5) and decoupled response, and

enabled us to compare the pilot's "workload" over that trajectory.
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The "workload" was a quantitative measure derived from the pilot

input-rate histories; the process used here is explained fully in

Section 4.3.

The premise for using this method is straightforward, and the

method's advantages are readily seen:

I.) This method does not employ human pilots or a simulator.

It is purely computational, but much simpler compared to a

simulator, though equally effective for preliminary analyses of

controllers and the effects of auxiliary propulsion. In addition,

the method certainly does not require the cost and time

commitments of simulation studies, nor does it depend on the

availability of pilots with comparable training.

2.) Taking the pilot out of the loop permits separate and

unbiased evaluation of the helicopter attributes (notably agility

•,ia available control power) and the control system attributes.

The £a2zeaea/ ability to satisfy the geometric and flying qualities

criteria throughout a trajectory, with _ pilot workload,

is essentially a function of the features of the helicopter, and

not of the pilot. But, because human pilots are very adaptable

[14], an ill-equipped helicopter may be made to fly as desired at

the expense of the pilot's workload. Consequently, the pilot

rating system makes it impossible to separate out pilot workload

associated with "inadequacies" of the helicopter, from workload

associated purely with the functioning of the control system.

In the trajectory optimization method, the trajectory's

geometry and flying qualities are easily quantified, and are

exactly the same criteria which the pilot attempts to meet when
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performing the maneuver. But by specifying the physical control

input histories, and not pilot input histories, we _ the

helicopter fly as close to these constraints as possible, and we

can therefore evaluate the helicopter's attributes independently

of the pilot and the control system.

3.) Pilot workload is effectively described using a simple

quantitative measure. We quantify pilot workload by observing

that workload is directly related to the amount wMich the pilot

must exercise his controls. That is, workload is directly related

to the "area under the curve" of the pilot input-rate histories

(we use the integral of the norm of the input rates -- see Section

4.3).

Reference [i0] suggests that a quantifiable measure of pilot

workload can be related to the amount of time that the

helicopter's pitch attitude exceeds specified upper and lower

bounds. This may be a good measure, but in the method of this

study, we force the helicopter to remain within these bounds.

Therefore, this type of workload, which is really associated with

the control power of the helicopter, can be disregarded, so that

our valuation of pilot workload seems to give a better appraisal

of the controller itself.

4.) The control histories extracted from the trajectory

optimization program are for the open-loop helicopter.

Determination of these optimal control histories is therefore

independent of the controller. The inputs must come from the

control system, but are completely independent of the control

system _. To evaluate the performance of _ control

system structure, we take the optimal input histories, and the

34



control law for that controller, and back out what the pilot

input histories to the controller must be to generate the

controller ozdpa/ histories, which are the optimal £n@_ histories

to the helicopter. This means that, for each maneuver, the

optimal histories need to be computed only once, and then any

number of controller structures can be evaluated.

4.2 Pilot Input Histories

4.2.1 Implicit Model Controller

Extracting the pilot input history, d(t), for this controller

involves nothing more than simple matrix algebra. From Chapter

II, the control law is u(t) = -C1x(t) + C2d(t). For a given

trajectory, u(t) is the (optimal) history of swashplate inputs and

thruster inputs (if a thruster is included), x(t) is the state

history, i.e., the trajectory that was prescribed and which

, and C are the gainresults from the input history u(t), and C I 2

matrices. The control law equation is solved for d(t):

d(t) = cL[u(t) + C x(t)] (4-I)
2 1

d(t) is the history of pilot control input commands. This study

assigns the pilot two controls, vertical and horizontal velocity

command: d

w ]. Therefore, when the thruster is employed,
com

L comj

there are three helicopter controls, and C 2 is not square. The

solution for d(t) is overdetermined, and we must use the left

C L - (C_C2)-1C C and C are scheduledpseudo-inverse of C2: 2 2" I 2

according to the total flight velocities, U and W.
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It is also necessary to scale the commandvector, d, so that

the pilot inputs are within an acceptable range. The obvious

choice is to scale W to the range of the collective stick, and
com

U to the longitudinal cyclic stick range. These scale factors
=om

in no way affect the stability or response characteristics of the

control system. The factors form a 2 x 2 diagonal matrix,

0 /w 0
D = c,range com,ranse , which simply scales d by

0 B /u
Is,ranse com,max

premultiplying the feedforward matrix C (the left pseudo-inverse
2

is now a weighted left pseudo-inverse); see Figure 3-2.

For the thrust augmented helicopter, the helicopter has three

control degrees of freedom while the pilot has only two. Using

the pseudo-inverse to solve for the pilot histories effectively

was a "minimum norm" fit of d(t). Therefore, it was necessary to

check that the state history that resulted from pilot inputs to

the closed-loop system (x = [A-BCI]x + BC d) matched the state2

history determined in the trajectory optimization process. For

the trajectories and controllers investigated in this study, the

state variables of both histories (i.e., the integrated

closed-loop history and optimized history) matched within one

percent of each other over the trajectory interval. This was

expected because of the good low frequency input-output responses

of the controllers. Had these two histories not been consistent,

a suitable weight for a weighted left pseudo-inverse

transformation that resulted in matching state histories would

have been chosen.
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4.2.2 Explicit Model Controller

The prefilter in this controller makes the solution for d(t)

slightly more complicated than the solution for the implicit model

controller. It is necessary to simultaneously integrate the model

dynamics while calculating the pilot input history.

The control law is u(t) = -Clx(t) Czx_t ) + C3d(t ) . Solving

for d(t): d(t) = C_[u(t) + ClX(t) + C2 mX (t)]
(4-2)

However, in this equation x (t) is unknown. It must be calculated

from its dynamic equation,

x(t) = Ax(t) + Gd(t) (4-3)
m m

But since d(t) is present in this dynamic equation, Equation 4-2

must be solved while Equation 4-3 is being integrated. The

procedure is as follows:

The state and model initial conditions are known: x(t ) - x(t ) =
0 m 0

x . u(t) and x(t) are known for all t.
O

Therefore, we can find

d(t ) from Equation 4-2. Then x at the next step, i.e. x(t +i),
0 m m 0

is found by integrating Equation 4-3. Then solve Equation 4-2 for

d(t +I), and so on up to and including time t .
o f

In general, the

procedure is

I. Solve Equation 4-2 for d(t ) using the initial conditions.
O

2. For n discrete time entries in the time history, do the

following for k - i to n-l:

integrate Equation 4-3 to get x(tk+1)

solve Equation 4-2 to get d(tk+ I)

Because a fourth- order Runge-Kutta method is used for

integration, step 2 of the above iterative procedure is actually
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done four times for each integration time step. And, because the

gains are dependent on flight condition, they are calculated

whenever step 2 is performed.

Whend is overdetermined , i.e. when C has more nonzero rows3

than columns because there are more physical controls u than pilot

commandsd, the left pseudo-inverse of C is used in Equation 4-2.3

And, the pilot commandvector, d, is scaled to the conventional

collective and cyclic stick ranges.

The same discussion of the left pseudo-inverse and state

history matching of Section 4.2.1 applies to the explicit

controller.

4.3 Assessment of Pilot Workload

As stated in Section 4-1, pilot workload is assessed in terms

of control sensitivity, decoupled response to commands,and the

pilot commandinp _' rates. The first two are easily understood,

and used without explanation in Chapter VIII.

Intuitively, the more the pilot has to move the sticks, and the

higher the rates of movement, the more work he is doing to fly the

aircraft. The amount of stick movement, then, is a good

quantitative measure of pilot workload. The amount of work

performed in moving the sticks is the integral of the stick input

rate -- actually, to avoid assigning a negative work value for

negative rates, we used the norm of each iscalar) rate history.

Thus, this measure of workload is the "cost" of the rate input,

using unit weighting:

t

Pilot workload - _Itflld(t) lldt (4-4)

O
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This measure of workload depends on the time and nature of the

maneuver. Therefore, it best serves as a means of comparing

controllers for the so.he maneuver.

This measure was also applied to the helicopter control rate

histories (collective, cyclic, and thruster rate histories).

These work "costs" are used as normalizing measures for the

controller inputs and also to compare U vs B workloads and
' corn _5

W vs 0 workloads.
C Om C
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Chapter V

THE TRAJECTORY OPTIMIZATION METHOD

This chapter is comprised of three sections. The first

presents a general description of the formulation and minimization

of the cost function used in the trajectory optimization process.

In the second part, this general trajectory optimization method is

applied to the helicopter problem to determine the optimal control

histories for helicopter trajectories; individual terms of the

cost function are physically interpreted in the context of the

helicopter trajectory optimization problem. These two sections

are mathematically formal; optimized sample trajectories are given

in Chapter VII. The third part of this chapter describes the

algorithm used for the optimization.

5.1 Formal Mathematics

We begin with the dynamics of the plant and initial conditions

of the state:

= f[x(t),u(t),t] (5-1)

x(t ) _ x (5-2)
o o

where x and u (for our purposes) are the helicopter state and

control vectors, respectively (see Chapter III).

Initially, we define a cost function in the manner used in

designing optimal controllers. [4] The cost function J penalizes

state, state-control, and control excursions throughout the
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interval. The integrand of "penalties" is the Lagrangian, f.

j = [tff[x(t),u(t),t]dt (5-3)

t
o

Since we seek the control history u(t) which yields a stationary

minimium of this cost function, subject to Equations 5-1 and 5-2,

we adjoin the dynamic equation to the cost function, thus

including it in the minimization. Note that when the dynamic

equation is satisfied, this additional term in the cost function

equals zero, thus the cost function is numerically unchanged.

tf{ , i T }
J - f[x(t),u(t) t] + {f[x(t),u(t),t] - x(t)] dt (5-4)

t-

o

In many applications, one often desires to specify state

conditions at the end of the interval and at times along the

interval. Mathematically, this is accomplished by including

interior point penalty functions, 8, and a final point function,

4. Incorporating these penalties (also termed constraints), the

redefined cost function becomes

I

J - ¢[xf(t),tf] + E#._[x._(t),t._]

+ [x(t),u(t),t] + {f[x(t),u(t),t] -
t

x(t))}dt (5-5)

where I is the number of interior point constraints.

Finally, it is useful (and realistically imperative) to have

saturation constraints on the controls. These control constraints

are expressed by the function

C[u(t),t] _ 0 (5-6)

As with the dynamic constraint, the control constraint is included

in the minimization of the cost function by adjoining it to the
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integrand of the cost function; the adjoint vector for control

constraint is m(t). The redefined cost function becomes

J - _[x (t),tf] + Y-6 [x.(t) t ] + [x(t),u(t),t]
i i ' i Jto[

+ 1T(f[x(t),U(t),t]
X_t)] + m _t)C[u(t),t]}dt

(5-7)

m(t) is an influence vector, and each element of m takes its value

according to whether or not its corresponding control is

saturated:

>0 C =0#-

(t) _ i (5-8)m

i L 0 C < 0
i

This means that the product of each control/adjoint element pair

is zero, or mC = 0, so that the cost function is numerically

unchanged. The cost function now incorporates all the desired

penalties and constraints.

A Calculus of Variations procedure is used to derive the

conditions for optimality. [4] The objective is to find those

conditions which will cause the cost function to be at a

stationary minimum. Therefore, we begin by taking the first

variation (the differential) of J and equating it to zero.

Explicit reference of the variables to time is dropped here. And,

for simplicity in notation, only one interior point constraint is

used; the results are easily generalized to include multiple

interior point constraints.

It is convenient at this point to define the Hamiltonian, _, of

the cost function:
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H[x,t] - £[x,u,t] + 1Tf[x,u,t] + mTc(u,t) (5-9)

The Hamiltonian has the same form as the one used for optimal

controllers, with the addition of the control constraint term.

Then J = _[xf,tf] + 8[xi,ti] + Iif(R - 1Tx + mTC)dt (5-10)

o

0_ f t=t
+ £ dt + a8 + 88

t't f (_dti _dx) t=t

f i

+ £ dt
t"t i

I

+ (8£ iT@f Tat.. }+ _-_ + m _-_)Ou - IT6X dt

(5-n)

A few remarks: This equation contains no terms for the

differential changes in f and x because differential changes in f

exactly cancel with differential changes in x due to their

equality, Equation 5-1. The differential recognizes variations in

the state, the control, and the derivative of the state -- there

are no control derivative terms -- at a fixed time, t.

t

We now simplify the integral term JItflT6xdt. For any

variables y and v, lydv - yv - Ivdy.

IiT6xdt over the interval <to,if>,

o

Applying this to

and taking into

account discontinuities in x at the interior point, this gives

o i o o

t t

+ l_6xl f _ It_+iT6xdt
t +
i I

(5-i2)

But since x is continuous in the interval, the right hand side of

Equation 5-12 becomes
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t tl_6x[ ti + IT6xI t f+" f+iT6xdt = IT(t'-)6X(tl i-)
o i i

+ 1T(tf)6x(tz) 1T(t±+)6x<t±+) _iZiT6xdt
O

1T(t )6x(t )
0 0

(5-13)

We eliminate 6x terms by solving for 6x from the

equations for the differential, dx:

dx(tf) = 6x(tf) + x(tf)dtf

6x(ti-)+x(ti-)dt i
dx(ti) = 6X(t +)+x(t.+)dt

I i 1

following

(5-14a)

(5-14b)

(5-14c)

or, 6x(tf) = dx(t ) x(tf)dtf , (5-15a)

6x(ti-) = dx(t i) - x(t±-)dt i (5-15b)

6X(t.+) = dx(t ) x(t.+)dt
I i i 1

(5-15c)

Using Equations 5-15, and noting that the variation in the initial

conditions is zero, the right hand side of Equation 5-13 becomes

[lT(t -)-lT(t +)]dx(t ) 1T(t -)X(t -) + lT(t +)X(t +)
i i i • I i i

0

(5-16)

Finally, substituting for x using the dynamic relationships

x(t -) - f , x(ti+)_.= f , and x(tf)_.-- f |

I t - t + t
i i Z

t

for _t_iT6xdt becomes
o

the workable form

t

tflT6xdt = [iT(tl-)-IT(t +)]dx(t±) iT(t.-)f
0 i

+ iT(t±+)ft ÷dtl + iT(tf)dx(tf) - i T(tf)f t dtf
i f

o

dt
i

(5-17)
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#

Substituting this result into the cost function differential,

collecting like terms, and writing all suffixes as subscripts,

{8_ IT a_ iT dx}dJ - (_ + _ + f )dt + - )t t f (_ t t-t
tf f f f f

88 .iT (88 13+ (_ + _ +i T f f +)dr + +13 )dxt - t - t + t i _" t t + t=t
ti i • i i i i i

ftf[.3_ _xaf TaC -X.. .a_f -xaf T@C, ___
+ | 4(_---+i _---+m _---+I )6x +

JCo[ OX Ox OX (_+u I _+U TM -_)6 dt
(5-18)

To achieve J = 0 (minimization of the cost function), we choose

I such that the coefficients of variations in the state, control,

and time -- dx, 6x, 6u, and dt -- equal zero over the entire

interval <t ,t>. Doing this yields the following conditions for
o f

optimality :

1. i T - a___ (5-19)
t ax
f

2. i T a_ lTaf Tac a_ Tac (5-2O)
ax ax " m 8--x- "a--x- m 8--_

a_ iTaf TaC aR TaC (5-21)
3. 0 = _ + au + m a--G" a-q + m a-q

4. 0 - a_¢_ + M + iTf (5-22)
at t t t

t=t f f f
f

5a l : l + a_ (5-23)
t t + _x

i i

5b. 0 = a__8 + _ + 13 f iT f (5-24)
at t t t - t + t+

t-t f i i i i
i

The sufficient condition -- that the second variation of J to

changes in x, u, and t must be positive -- is not treated here.

It is noted below that this condition holds for the helicopter

application problem.
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Equation 5-19, together with Equations 5-20 and 5-21 without

the m term, are the classic Euler-Lagrange equations for fixed

end-time optimal control problems. Equations 5-23 and 5-24 are

the optimizing conditions when the end time and interior point

times are allewed to vary; i.e., these are the optimizing

conditions for open end- and interior-time problems. Equation

5-23 defines the discontinuity in the adjoint history l(t) at the

interior point time t . Equation 5-19 specifies a final time
i

adjoint condition, and because x is specified at t , this is a two
O

point boundary value problem and necessitates an iterative

solution (Section 5.3).

5.2 Interpretation for Helicopter Trajectories

The cost function used for the helicopter trajectory

optimization is linear-quadratic -- the helicopter dynamics are

linear and the cost function penalties are quadratic norms of the

state and control weighted by conformable positive-definite

weighting matrices. Positive-definitiveness of the weighting

matrices assures that the stationary point (found via cost

function minimization) is a minimum stationary point.

Mathematically, positive-definitiveness assures that the second

variation of the cost function is positive at the stationary

point. The method of using quadratic weighting matrices with

linear dynamics is analagous to the method "used in developing a

linear-quadratic regulator.

This section discusses each term of the cost function in the

context of the helicopter problem.
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5.2.1 Dynamic Constraint

The dynamics of the helicopter can be viewed as a dynamic

constraint which restricts the state accelerations to a given

function of the state and control. The dynamic equation is x = Ax

+ Bu. For the purpose of trajectory optimization, these dynamics

are augmented in three ways: (I.) to include perturbation

positions; (2.) to include the addition of auxilary propulsion to

the helicopter; and (3.) to account for control rate limits.

These three items are discussed separately.

5.2.1.1 Augmenting the dynamics to include change in position

Just as the perturbation rates and attitude, [u,w,q,8], must be

added to their respective trim values, [U W Q 8 ], so too must
0 0 0 0

the perturbation positions, [x y], be calculated and added to

their trim values, [X Y ]. Perturbation variables u, w, q, 8 are
O O

defined in a body axis system (Figure 3-1), so that perturbation

positions from trim must be resolved to the trim axis: x = ucos0

The dynamics are augmented to include theseand y = wcosS.

perturbation states:

U

-

A

cos8 0 0 0

0 cose 0 0

0

0

U

W

q

0

X

Y

+

B

0

(5-25)

0 in the cos0 terms makes these augmented dynamics "slightly"

nonlinear.

5.2.1.2 Inclusion of Auxilary Propulsion

In the current longitudinal framework, the two physical
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controls of the helicopter are the swashplate controls:

collective and longitudinal cyclic. Addition of an auxilary

propulsive device would institute another control, which is

included in the dynamics as follows:

• • 0

u

w

i
x

L

A

cos0 0 0 0

0 cos8 0 0
0

u

w

q

9

x

Y

+

iXT°

I0
B ]

I0

_Ii0

Io

o ilo
(5=26)

It is assumed that the auxiliary propulsion system provides purely

longitudinal thrust. Thus, as Equation 5-26 shows, the only

nonzero control derivative in the third column of the augmented B

matrix is the derivative which directly affects horizontal

acceleration, u. This is obviously a very simplified approach. A

much better understanding of the auxiliary propulsion unit and its

aerodynamic and inertial effects on the helicopter is needed

before its effects on any of the stability and control derivatives

can be quantified. As for XT, there is little data available on

stability derivatives for longitudinal thrusters on helicopters or

VTOL aircraft. A value for X is best determined by sizing it
T

according to the desired acceleration level. This is discussed in

Sections 2.3.1 and 6.1.

5.2.1.3 Control Rate Limits

As noted in Section 5.1, the cost function constrains the

controls to fall within their saturation limits. This is, of

course, a realistic necessity since a helicopter (or any other

system) has physical limits on its control power. But it is also
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necessary to constrain the control o_u_e_,since the hydraulic

actuators impose a delay on the commandinput. These limits are

included in the optimization as follows.

Consider the scalar control u, and assume it behaves as a

first-order system:

1 1
u = --u + -u (5-27)

T T corn

For a unit step input, the response is

-t,/'r
u= (i - e ) (5-2S)

L i -t/T I= -e so 6 = - (5-29)and
T max T

This means that the control is rate-limited by ±!. Employing this
T

method of rate-limiting has two particular advantages. Firstly,

this first-order lag realistically models the actuator dynamics of

the swashplate (Figure 5-1). The actuator lag time-constant is

in the equations above. Secondly, rate-limiting the controls in

the dynamics means that a rate-limit constraint does not have to

be explicitly included in the cost function. Including such a

constraint would add more complexity to the cost function and

increase the optimization computation time. If the constraint was

explicitly included, it would be appended to the cost function

with an influence vector in a fashion similar to that done for the

control constraint. [4] This would, however, necessitate

back-differencing the control history to compute the control rate.
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pilot control

inputs d inputs U

swashplate

commands Uc > swashplete

controller and thruster

actuator lags

other controller

inputs (e.g., feedback

and prefilter signals)

Figure 5-1 Actuator lags

Each of the three controls is rate-limited by a first-order

system with an appropriate time-constant. These control dynamics

are appended to the dynamics of Equation 5-26. The physical

controls 0 B and T now become part of the state vector and
) C) IS )

the commanded controls now serve as the control vector.

G

c

Is

£

A

0

cos0 0 0 0

0 cos8 0 0

+

B 0

-1-_" 0 0
O

-10-_ 0 0
B

-10 0-_
.... T i --

0 I 0
I

.-z 0 0
o
0 r-I 0

B

0 0
.... T

,)Bc

TIs

U

W

q

0

0
c

B
ls

T

X

Y

(5-30)
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We now let x = Ax + Bu represent this augmented system. This is

precisely the dynamic constraint, x - f[x,u], used in the cost

function.

5.2.2 Flying Qualities Constraints

The Hamiltonian penalyzes state and control excursions from

zero throughout the flight. We can loosely say that the

Hamiltonian quantitatively characterizes the desired "flying

qualities" of the flight. Consider the quadratic Hamiltonian

_[x,u] = --IxTK x + xTK u + --IuTKu
2 x xu 2 u

(5-31)

The first term penalizes excursions of the state. Term three

penalyzes control excursions and term two penalyzes state-control

excursions. Excursions of a particular variable are penalyzed by

assigning a positive weight to the corresponding element(s) of the

appropriate weighting matrix. Because the Hamiltonian is

integrated, and because the optimization procedure works to

minimize the Hamiltonian, those state and control elements which

are weighted must necessarily be driven toward zero. That is,

their excursions (from zero) are minimized. Motions of state and

control elements with zero weight are unrestricted -- though of

course the dynamic constraint and other applicable constraints

still apply.

For example, it is often desired to restrict the pitch rate and

pitch attitude of the helicopter throughout the trajectory. In

this case the [s,s] and [4,4] elements of the K matrix are
X

assigned positive weights. Intuition and experience dictate that

it is usually only necessary to assign values to the diagonal

51



elements. In all cases, however, it must be rememberedthat the

weighting matrix of the Hamiltonian -- the one formed by

augmenting x and u -- has to be symmetric positive-definite.

Determining the value of a weighting element is a matter of

"engineering judgement." One develops a "feel" for sizing these

weights according to their observed influence in the resulting

optimal trajectory.

One final point about the weighting matrices. _ This analysis

uses constant, time-invariant matrices. Matrices that are a

function of time are probably not realistically necessary.

Matrices that are a function of the state and/or control --

perturbation or nominal -- may be effective. However, if a

weighting matrix is a function of a perturbation variable, the

optimality conditions that result from the partial derivative of

the Hamiltonian with respect to this variable will be slightly

changed.

At this point, with dynamic constraints and flying qualities

constraints, the cost function is

- [ f xTK x + xTK u + uTK u + iT(Ax+Bu) - ITX dt
J JtoL2 x xu u (5-32)

5.2.3 Interior and Final Point Constraints

Most NOE maneuvers are associated with _chieving a specified

velocity or position at a specified time, or within minimum time.

Therefore, it is necessary to be able to specify the state vector

at a point in the trajectory. This ability equates mathematically

to constraining the state to equal a specified value at this

specified time.
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Again, quadratic constraints are used for the interior and

final point constraints. Denoting Xfd as the desired state vector

at the final time t , the error between the actual state and the

Using the weighting matrix K we
desired state at tf is xf-Xfd, f,

can construct a quadratic penalty of the final state error:

1
_[x(tf),tf] - _(Xf-Xfd)TKf(xf-Xfd )

Similarly, for (multiple) interior points,

(5-33)

I I

ES[x(t i),ti] - _Z(x -xid)_K (xi-xld)
i i

Including these constraints, the cost function is now

1
J - _(Xf-Xfd)TKf(xf-Xfd

I

) + iE(Xi-Xld)TKi(xi'Xid )

i

+  t  IxTK o }tol_ xX + xTK x U + UTKuU + IT(Ax+Bu) - ITX dt

(5-34)

(5-35)

5.2.4 Control Constraints

The swashplate controls and the thruster control have minimum

and maximum saturation limits. These limits cannot be exceeded,

and a hard constraint must therefore be imposed on the controls.

Adjoining the control constraint to the cost function assures that

the constraint will not be violated.

The control limits are simply

u _u_u
rain max

or, 8
¢
rain

B
is

min

_<0 _<0
c c

max

_<B _<B
ls ls

max

(5-36)
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T _<T_<T
min max

Written functionally as a constraint,

= [ U'U_ax] --< 0
C[u(t),t]

[-u+UminJ

(5-37)

This constraint is adjoined to the cost function with m(t) exactly

as the dynamic constraint was adjoined with l(t). Note that the

dimension of m is twice the dimension of the control, u.

With the addition of the control constraint, the cost function

takes its completed form:

1

J - _(Xf-Xfd)TKf(xf-Xfd

[t_!xZKx
+ JtoL2 x + xTK

I

) + _E(xi'xid)TKi(xl "xld )
i

u + uTK u + iT(Ax+Bu) ITx + mTC}dtXU U

(5-38)

5.2.5 Optimality Conditions

Applying the optimality conditions derived in Section 5-1 to

this linear-quadratic

optimality conditions

problem:

cost function yields the following

for the helicopter optimal trajectory

.

.

a_ T
it = (_--_) = Kf(xf-x d)

f

aR Tac.7
i - (-_ - m_) - -K_x - K=uU - ATz

3. 0 _ a_ Tac K T
u au+m_ x u u.... ux + K u + BTI + mTc

(5-39)

(5-40)

(5-41)

where for three controls, C - diag[1 z 1 -i -I -z]
U
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4. 0 _ _y_m_ + _ + iTf
at t t t

t't f f
f

- (xXK x + xTK u + u_K u)
X XU U t + l_(Ax+Bu)t

f f

(5-42)

5a. 1 - i + aet t+ _-1- t+
i i i

+ K -Xid)i (Xi
(5-43)

5b. 0 - a_90 + _ + I _
Bt t t

t-t i
i

f - 1T f
t - t + t+
i i i

- (xTK x + x_K u + uXK u) + 1_ (Ax+Bu) 1 T _Ax+Bu) t
x xu u t t - t - t +

i i i i i

(5-44)

5.3 Optimal Trajectory Computation Algorithm

The numerical solution method used to solve the trajectory

optimization problem is the second-order gradient, or steepest

descent, method. [4,32] This is an iterative method that improves

the control history, u(t), on each iteration. Improvement

connotes minimizing the cost, thereby coming closer to satisfying

the optimality conditions.

The following flow diagram shows the logistics of the steepest

descent algorithm used for the trajectory optimization. A

discussion of component functions of the algorithm follows the

flow diagram.
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Inputs

trim conditions

interior and final points

weighting matrices - interior point

- final point
- state

- control

- state/control

time interval and integration increment

perturbation initial conditions

initial control history guess

actuator time-constants

auxiliary thrust on/off flag

l
Control Power

determine perturbation control limits

1
Integrate states x(t)

integrate forward in time using initial

guess of control history

1
Calculate cost J

record this cost

)

,t

I IS COSt minimized? [ yes

no

Integrate adJoint l(t)

integrate backward in time

I
Calculate adJoint m(t)

for control saturation
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i
Calculate gradient H (t)

U

I

Is the gradient zero?

for all controls

yes

_no

Perturb control

by a fraction of the gradient.

u (t) m u (t) k_ (t)
new previous u

Use orthogonal search to find

cost minimizing fraction k.

Requires state integration.

New x(t) and u(t)

i
Total state and control

histories

add x(t) and u(t) to trim

values

I

Figure 5-2 Flow Diagram of Trajectory Optimization Algorithm

5.3.1 Inputs

Each interior and final point is specified by the time at which

it occurs, and by the values of each state element at that time.

Obviously, tf is the time for the final point. Initially, the

interior point times must be guessed. Equations 5-42 and 5-44 are

the optimality conditions which dictate how these initial guesses
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should be changed for minimum-time problems. That is, these

conditions are used as a gradient to adjust the interior and final

point times until the new times result in trajectory histories

which satisfy the equalities of Equations 5-42 and 5-44. In

practice, finding the times for minimum-time problems is

difficult. Rather than employ these optimality conditions in an

outer-loop iteration around the optimization problem, once an

optimal (but not minimum time) trajectory has beer/ computed, the

"tweaking" of these times is left to the user. The rationale is

that the outer-loop iteration would have to choose a fraction of

the interior point time gradient with which to perturb the

interior point time. Choosing the correct fraction is very

difficult, and a bad choice could mean considerable time to

convergence, if convergence occurs at all. The user performs

essentially the same outer-loop process by observing the completed

trajectory and control histories, and deciding how much, if any,

he wants to try to improve the trajectory by changing the interior

point times. Mechanically, this means respecifying the interior

point times and rerunning the optimization. The time to rerun the

optimization is short, since presumably the new interior point

times are not radically different form the existing times, so that

the new optimal control history does not differ greatly from the

existing history. The most efficient method is for the user to

change the interior point times.

There is virtually no limit to the number of interior points

that can be specified -- the limit is the number of time steps

taken in the interval, minus the ones for t and tf, or
O

(to-tf)/(integration increment) I. In practice, it would never
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be necessary to specify this many interior points. State elements

which are nnt to be constrained at interior or final points are

assigned an arbitrary value, but their corresponding weighting

matrix elements nu_ be zero.

The integrand weighting matrices (K , K , K ) must be
X XB U

conformable with the state and control vectors. They must also be

selected such that they form a Hamiltonian whose second

derivative with respect to the control (_ ) is positive. In
uu

other words,

Kx Kxu]

KT Ku JXU

must be symmetric positive semi-definite.

In many applications, K and K are null matrices, so that K
X XU U

cannot be null. Elements of K are usually small; the identity
u

matrix is a good choice for K .
u

Trim conditions are [U (ft/sec), W (ft/sec), Q (deg/sec), 8
0 0 0 0

(deg)]. Perturbation initial conditions should always be zero.

The time interval <t ,t > is from t =0 to t . For minimum-time
o f o f

problems, determination of minimum t is best left to the user via

the method discussed above for interior point times, for the

reasons given.

The integrations in this study are performed digitally and are

therefore discrete. Integrations are performed at 40 Hz, or every

.025 seconds. The lower limit should be small enough to properly

calculate the fastest dynamics. In this study, the fastest

dynamics are the actuator dynamics, which have time constants of

.08 seconds.
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The better the initial estimate of the control history, the

less time the optimization will take. The example of Section 7.4

showshow the trajectory converges to the optimal history from the

initial history. The initial history can be quite dissimilar from

the optimal history and still converge, as long as the pitch

attitude is not driven to excessive amplitudes (near 90° and

larger). And, it of course makessense to specify control values

for the initial estimated control history which are within the

saturation limits. This initial control history _ have time

entries consistent with the specified time interval and

integration increment.

The perturbation control limits are determined from the trimmed

stick positions and the absolute authority limits of each control.

The perturbation control, in terms of stick movement, is the

inches of stick available from the trimmed position to these

minimum and maximumlimits. Perturbation stick movements are

determined by finding the trimmed stick position (in inches) using

the trimmed swashplate angle (in degrees) and the total stick and

swashplate travels. For the longitudinal cyclic, this gives:

8 - _ B B

[ I [ 1trim min -- trim min

8 8 _
is Is is - is

max rain deg max rain inches

or, solving for 8
ls

trim, inches

(5-45)

IStrim mln

- 8 8 x -8 +BIs is ls
_lStrim, inch 1 s i s max rain in rain , i n

max min de8

(5-46)
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The perturbation stick travel is then

BIs = (B1s _ BIs ) (5-47a)
max,inches max trim inches

B1s = (B1s - Bls ) (5-47b)
min, inches min trim inches

Similarly, for the collective perturbation stick travel:

8 = [e - e ) (5-48a)
c ¢ c

max,inches m_ trim inches

B - [8 - 8 ) (5-48b)
c c c
min,inches min trim inches

Note that the total permissible perturbation stick travel is equal

to the total stick displacement; the trim position acts merely to

define the perturbation "zero reference" position. Because the

trim conditions used in this study are for conventional

helicopters, the trimmed horizontal thruster position must be

taken to equal zero. Minimum and maximum thrust perturbation

movements are therefore the same as the total minimum and maximum

movements.

Finally, the user selects the auxiliary propulsion option by

setting a flag either on or off. An off flag zeros the control

derivative column in the B matrix (XT = 0).

5.3.2 State Integration

The state equation, x - Ax + Bu,

from x using a fourth-order
o

is integrated forward in time

Runge-Kutta procedure. The

integration increment is constant and specified by the user. The

stability and control derivative matrices are scheduled according

to flight condition and thus are computed each time the integrator
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s
moves to compute x. There are two entries in the state time

history at interior point times. The second entry is necessary to

account for discontinuities in x and i that occur at interior

points (see Equation 5-43).

5.3.3 Cost Calculation

The integral of the cost function is computed by rectangular

integration. The interior and final point costs are calculated

using simple matrix mathematics.

The cost of control alone is computed and retained. It is used

within the optimization algorithm as a measure for evaluating

whether the cost function has been sufficiently minimized.

Sufficiency is established when the total cost has been reduced to

a level where the cost of control makes up most (90%) of the total

cost. Recall that we want to determine the control input

histories necessary to fly the trajectory, and we are therefore

not interested in restricting control excursions (K is small).
u

This means that when the trajectory is optimal, undesirable state

excursions will be zero, and the (minimum) total cost will be

comprised only of the cost of control, and thus the reason for

using control cost as a minimization sufficiency measure.

5.3.4 Adjoint Integration

The adjoint equation (Equation 5-40) is integrated backward in

time from i (Equation 5-39) using a fourth-order, constant
f

increment, Runge-Kutta procedure. Equation 5-40 contains the A

matrix, which is a function of flight condition and therefore

computed each time the integrator moves to compute i. The
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integration routine places two entries at interior point times to

account for discontinuities in i at t's (see Equation 5-43).
i

l(t) necessarily has the same number of time entries as x(t) and

u(t).

5.3.5 Control Saturation Adjoint Vector

Each element of the adjoint, or influence, vector, m(t), can

take on positive or zero values throughout the interval. Elements

of m equal zero for an unsaturated control. An element becomes

positive when its corresponding control is saturated. When the

control is saturated, its element in m(t) is solved using Equation

5-41. Because a fraction of this equation, i.e. the gradient _ ,
u

is used to perturb the control, and because H - 0 when the
u

control is saturated, any improvement in the cost by perturbing

the control would violate the constraint. When (and if) the

element of m _ to turn negative, this signifies that the cost

can be improved (reduced) by _ the control, i.e., by

perturbing the control by a fraction of the now nonzero gradient.

5.3.6 Control Gradient Calculation

Equation 5-41 is used to calculate the gradient, _
u

#

, for each

scalar control. (When the control element is unsaturated, m C =
i i

f

O, and the gradients _ and _ are the same). The control
U u

gradient can take on positive, negative, and zero values at each

(discrete) point in its time history, depending on which direction

(positive or negative) and how far the control is from its optimal

value. See the discussion in Section 5.3.7 below for its

application.
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5.3.7 Control Perturbation

When the cost function is minimized, the gradient for each

control equals zero over the entire interval, satisfying equation

5-41. However," to minimize the cost function requires numerical

techniques because x(t) and i(t) are integrated in opposite

directions in time, posing a two point bondary value problem. The

steepest-descent method for solving this problem perturbs the most

recent control history estimate by a fraction of the gradient

history. The gradient gives the direction (positive or negative)

and the _ magnitudes across time of the amount by which

each control element should be perturbed. However, because this

is a two point boundary value problem, which means the gradient

expression is not "correct" until it exactly equals zero (which

occurs when the cost is minimized and x(t), u(t), and l(t) are

optimal), the gradient indeed provides only relative magnitudes,

requiring that it be scaled by an "appropriate" fraction across

the interval. As well, it cannot be expected that the same

fraction is "appropriate" for each control element. Each

element's fraction does, of course, apply over the entire

interval.

The "appropriate" fractions for the control gradient elements

are the ones which generate a new (perturbed) control history,

u (t) - u (t) - kH (t), which minimizes the cost within
new previous u

the _ iteration of the trajectory optimization algorithm.

[2,32] The search for the best fraction vector is an iterative
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procedure which takes place within each major iteration of the

trajectory optimization algorithm. Its logistics for the three

controls case are shown in the flow diagram below. The iteration

takes place within the Perturb Control block of Figure 5-2.

Component functions are explained following the diagram.

Inputs from Main Program

............................. ....................;_;_in.

Record starting cost

I
Select fraction vector k I

I
u _ u - kH ]

Perturb control: new prev u

integrate states; record new cost

'1
Search along vector in r-z plane

from current point to find

cost-minimizing point.

For each point tested:

Perturb control; integrate

states; record new cost

I

Search along orthogonal vector

in r-z plane

from current point to find

cost-minimizing point.

For each point tested:

Perturb control; integrate

states; record new cost



n°I

1
Search along orthogonal vector

in x-y plane

from current point to find

cost-minimizing point.

For each point tested:

Perturb control; integrate

states; record new cost

I
Is Cost less than Starting Cost?

Figure 5-3 Flow Diagram for Fraction Vector Search

5.3.7.1 Selecting fraction vector k

To minimize the cost, we want to move the controls in the

direction opposite the slope of their gradients [4], by a fraction

of their gradients; i.e., we want to subtract kH (t). And since
u

the sign of the gradient tells us its direction, elements of k

will always be positive (or zero).

Two options are available for selecting the fraction vector

with which to begin this algorithm. One option is simply to use

the vector which resulted from the previous search. A second

method is employed when either: (I.) the current search is the

first search within the first major iteration step (so that a

fraction vector does not currently exist) or, (2.) the fraction

vector from the previous search generates a control which yields a

cost that is much greater than the current recorded cost. This

second method takes, as the fraction for each control, 0.9% of the
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quotient of the average absolute value of the control over the

entire interval, and the maximum of the absolute value of its

gradient over the entire interval.

5.3.7.2 Perturb Control

Once the control is perturbed -- u (t) - u (t)- kH (t)
new previous u

-- the state integration and cost calculation are performed using

exactly the same functions called by the main program.

5.3.7.3 Search Routine

For m controls, the search routine searches the positive

m-space by seaching along a starting search vector within this

positive seach space, and then systematically searching along m-i

orthogonal vectors. The search moves to an orthogonal vector once

the cost-minimizing point along the current vector has been found.

This procedure is common, and treated in many texts [2,32]. A

simple example best illustrates how the routine works.

Figure 5-4 plots cost contours versus fraction elements for a

* and k*, which
two control case. The fraction elements, k I 2

minimize the cost, are to be found. Starting at point A, vector 1

is searched for the [kl,k2] pair which minimizes the cost along

vector i; this is achieved at point B. Then vector 2, which is

orthogonal to vector i, is searched, and the minimizing fraction

pair is found at C. Then vector 3 is searched, et cetera, and the

process continues until point [kl,k2] is _eached.

To determine which direction to search along a given axis (from

its nominal point), the costs of points on each side of the

nominal point, but very close to it, are computed. The direction

of lesser cost is then searched. The routine defines two search

lengths along every search vector, one on each side of the
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starting point (see Figure 5-4), that extend from the starting

point to the axes which the vector ultimately intersects, or to

infinity. Costs are computed for four equally spaced points along

this length. Of course, the search along the current vector stops

when the cost increases, and if three points were investigated

along that vector, a quadratic (least-squares) fit is performed to

determine the point of minimum cost. An orthogonal search then

proceeds from that point.

k 2

Figure 5-4

contours of vector 1 _ /
constant cost vector 2

k 1

Two-dimensional Gradient Search Vector Example

Both the cost contours and the gradient change after each major

iteration step, because x(t) and u(t) have changed. Therefore,

the same point (set of fraction elements) may not reduce the cost

on the next major iteration. Nevertheless, _his point becomes the

starting point for the orthogonal search.

As one might expect, the greatest reduction in cost usually

occurs after m vector searches, where m is the number of controls.

Take, for example, Figure 5-4 again. In this two control case,
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searches along the first two search vectors (vectors 1 and 2)

reduce the cost more than all the subsequent searches. Because

the integration and cost calculations take considerable time, and

because they are performed for each point that is checked along a

vector, the search routine checks to see if the cost after m

vector searches is less than the starting cost (from the previous

major step). If it is, the search ends. Though the cost may be
f

further reduced by more searches, this cost reduction (usually

small) is not worth the computation time, and it is therefore

advantageous to recalculate the gradient (next major step) which

should yield more substantial reductions in the cost. Of course,

if the cost has not been reduced after m tries, another m vector

searches are performed before going to the next major step.

For this application, m - 3, and a vector search is carried out

in the positive x-y-z space (or we could call it the k -k -k
i 2 3

space). The progression that this algorithm takes is to first

search the r-z plane, which is the plane made by the z axis and

the resultant vector r in the x-y plane. The second search vector

is the vector orthogonal to the first vector in the r-z plane.

There is an infinity of choices for the third vector, which is a

vector orthogonal to the first two. The choice in this study is

to use the vector in the plane parallel to the x-y axis at the

point of intersection of the previous two vectors; i.e., at z -

constant.

Determining the_orientation of the intitial search vector is

also a matter of choice. Eight distinct search vector

orientations are possible in each plane, as shown in Figure 5-5.

Unless a gradient element is zero over the entire interval, or a
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control is not operating (e.g., when the auxiliary thruster is

off), the vector from the origin (vector i in Figure 5-5) is taken

as the initial search vector in each plane. In the special cases

noted above, or in cases where the search along a vector

terminates at an axis, the search vectors will be those vectors

on, or parallel to, the representative axis.

The algorithm codes the eight different vector types by their

search lengths and angle of orientation at a given search point.

The code changes systematically according to the orthogonalization

of the vector. For problems with more than three controls, it may

then become advantageous to replace this technique with a more

general technique, such as a Graham-Schmidt orthogonalization

method [2].

This procedure changes from one to three of the fractions each

time the search routine moves to a new point. This tends to make

the orthogonalization process and vector length computations

somewhat complex. A parallel search system -- one that varies

each fraction element independently, i.e., one that searches

parallel to each fraction axis -- would be trivial, and greatly

reduce complexity (and therefore some computation time). This

method was tried, but found to be inadequate. It Is not as time

efficient as the current algorithm. And, because it varies one

element at a time, it tends to spend a lot of time in the "ridges"

of the cost function contours.
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Figure 5-5 Possible Search Vector Orientations in a Plane
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Chapter VI

CONTROLLERS FOR THE AH-IG TRIMMED AT HOVER

This chapter provides practical numerical examples of the

development of the feedforward and feedback gains for an implicit

and explicit model-following controller for longitudinal control

of the AH-IG in the hover flight regime. The ideal response model

reflects the desired handling qualities criteria for a

longitudinal velocity-command controller operating near hover in

an NOE environment; numerical criteria data are taken from the

references cited in Section 2.5.

The development procedure includes the following analyses:

input-output frequency response magnitude and phase analyses;

eigenvalue placement and associated damping; and step input time

history analyses. These analyses were used in designing each

controller at each of the twenty-two trim points. Since it is

rare that a controller can be developed which exactly meets the

prescribed numerical handling qualities criteria, acceptable

deviations, or "conditions of acceptability" were defined around

these criteria. The controller was judged to be satisfactorily

developed once the results of the frequency, eigenvector, and time

history analyses met these conditions. These conditions also

establish a common ground for comparing different controller

structures. The conditions are defined in Section 6.4. Section

6.5 discusses the methodology for selecting weighting matrices'

elements and the sensitivity of the closed-loop dynamics to these
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elements. The examples below are for the hover trim condition,

which was found to be the most difficult condition (of the

twenty-two trim conditions investigated) for satisfying the

handling qualities criteria.

6.1 Dynamics of the AH-IG and the Handling Qualities Model

The longitudinal model dynamics, x - Ax + Bu, are

u

w

.33 0 0 0

0 -.4 0 0

0 0 0 0

0 0 I 0

u

w

q

e

+

0 .33

.4 0

0 0

0 0

Wcom ]
Uco m

It is obvious, in this simple model, that the u and w responses

are completely uncoupled and have first-order responses with

time-constants of --
1 1

and -- seconds, respectively, q and e
.33 ._0

equal zero over all time since the perturbation initial condition

vector, x is a null vector and since q and e are unforced; this
O'

means Q and 8 remain at their trim values, Qo and 8o.

The linearized longitudinal dynamics, x - Ax + Bu, of the AH-IG

near hover (U -i. 69 ft/,ec, W -- .02 ftl,e=, Q -- 0 deglsec, e --. 73
0 0 0 0

deg) are

-.12 -.3836 .31 .4 99

.0105 -.00350 -.231

+ is- 12.66 0 s

.003067 -.162,0

(6-1)

The B matrix of the dynamics of the conventional helicopter has

been augmented with a third column which incorporates the effects

of the auxiliary propulsion system. The "2" in this third column

is the control derivative for the auxilary propulsor's
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contribution to the X-force (see Section 6.1.1 below). If the

third column of B is null, meaning that no auxilary propulsion is

employed, elements of the feedforward and feedback gain matrices

corresponding to the thrust control will equal zero. This is

shown by example for each controller.

6.1.1 Inclusion of the Auxiliary Thruster in the Dynamics

As discussed in Section 2.4, the advantages incurred using

auxiliary propulsion come in the ability to achieve higher rates

of acceleration and deceleration. We therefore derive the values

for the thruster elements in the dynamic equation from the

desired acceleration level, 0.3g to .35g.

In this simplified representation of the auxiliary thruster,

the thruster contributes only to horizontal longitudinal body-axis

acceleration/deceleration, i.e., to u (see Equation 6-1). It was

assumed that there are no changes in any of the stability

derivatives or any of the control derivatives for the conventional

helicopter; and, the first element in the third column of the

augmented B matrix is the only non-zero element in that column,

representing the control derivative XT.

The general expression for the dynamics of the thruster is then

u-XT
T

or, X - u/T
T

We express the travel of the thruster

assign its range to be commensurate

collective and cyclic: T can travel +5 inches.

deflection at _+.3g, this yields

control

with the

(6-2)

(6-3)

in inches, and

ranges of the

For full control
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2

.3g(32.174 _t/,,c /g) ft
X - - 1.93 _ 2

2
5 inches , .in

The AH-IG's actuator lag time-constants for both the cyclic and

collective inputs are 0.08 seconds; 0.08 seconds is also used for

the auxiliary thruster's actuator lag time-constant.

6.2 Implicit Model-Following Controller Design

6.2.1 Designs Including Auxiliary Propulsion

The controller gains for the AH-IG with auxiliary propulsion

installed are derived first.

The Q and R matrices that result in a contoller which exhibits

the desired handling qualities are

Q= 0 0 30 30 ] and 0

2

130 0 30000 I I
L30 0 0 3000J

The resulting weighting matrices are

Wxu,,[224.9 12.68 22.37] Wdu"[-626.40

|_o_._ -._ -_._| L-_._ _._
/-_"' _" __'/
L-527.4 -lo94 -193o.j

o]24

Wxd-[-5.94 4.47 5]

/-2. 652 -.23S4 /
115.35 13. 06 /

L2O.ZS -3B6. zj

The steady-state Riecati matrix, P, and influence matrix S are
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P. [.02,_.0001,-.9,_-2.,0,l s.
1.000,,000_ ,2_-.0,,,!

L-2.404 -.0545 102.4 249.9 j

.023t5 .92851

-.0004 - 0156 /

.04818 3082 /

.00968 0322J

The resulting feedback and feedforward

gains are

] " -.02607 -.000001"

- .00423 -.0244 -.0324 C 2 -.0605

L.O7365 -.02042 2.41 -15.01J L.O1283 -.1946

The resulting closed-loop dynamics are x - (A-BCz)X + (BC2)d:

_ i-.000028-33001760o2671
/.0326 -.0003 .7821 - .2928 /

L o o 1

+

.00185 .3927] co

The open-loop eigenvalues (A matrix) and closed-loop

eigenvalues (A-BC matrix) are
1

open-loop .12o5 ±.2645i

.4411 _.1927i

closed-loop -.3902 _ .3726i

-.4019

-.33

Two of the open-loop eigenvalues are unstable. All four

closed-loop eigenvalues are stable. Of the closed-loop

eigenvalues, two have been properly placed at -.4 and -.33 on the

real axis; they have been driven to the roots of the model. The

two other eigenvalues have complex parts ([ - 0.52); the frequency

plots (Figures 6-1 and 6-3) and step input time histories (Figures

6-2 and 6-4) show that they do not comprise the dominant modes of

the closed-loop dynamic response, though they are nevertheless

sufficiently damped. Inspection of the Bode plots and step input

histories in Figures 6-3 and 6-4 show that the vertical response

to a vertical command input exactly tracks the response of the
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first-order model to the samecommand; the responses of the other

states are insignificant.

The u to u response of the controller (Figures 6-1 and 6-2)
CON

also emulates the model response very well; the horizontal

velocity response, u, to a step input in u tracks the model
con

response almost exactly, and no pitching motion results from this

command. The ability of the helicopter to translate forward

without a nose-down attitude is attributed to _the auxiliary

thruster; for the conventional helicopter, discussed below, the u

to u response is accompanied by a nose-down attitude.
C Om

6.2.2 Designs Without Auxiliary Propulsion

For the conventional helicopter, the gains are computed in

exactly the same manner as illustrated above, with the following

two changes in the inputs" the open-loop B matrix is not

augmented with the auxiliary propulsion dynamics, and the

weighting matrices which ultimately provide the desired handling

qualities are"

0 i 00001
1oo o o

LlOO o o

The resulting controller gains are

- [.00955 .00417-.0302-.o,.j cz -
C1 .2923 -.0122 .3504 -25 35]

0 0 0 0

". 02595 _.0036]

•003917 -.257/
0 0 J

(The third row of gains contains zeros because the auxiliary

propulsion is "off").
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The closed-loop eigenvalues are -.08s ± 2.016. Again, two of
-.4002

-.3305

the poles have been properly placed at the poles of the model.

The frequency and step input response plots are shown in Figures

6-5 to 6-8. Figure 6-5 shows a large amplitude response of q (and

8) at a frequency of 2 rad/sec to a u input, and Figure 6-6 shows
C

the presence of the lightly damped mode in the pitch response to

u inputs; the pitch rate feedback gain to u is only 0.35
¢ c

compared with -21 in the augmented helicopter's feedback matrix.

This lightly damped mode does not meet the criterion set forth

in Table 2-1. However, as noted above, it is not always possible

to satisfy each criterion. In this example, increasing the

damping of this mode (by increasing the values of the Q[I,3],

Q[I,4], Q[3,1], and Q[4,1] weights) lengthened the time-constant

of the horizontal velocity response to a horizontal velocity step

input command, as shown in Figure 6-6a. Because this study used a

velocity-command controller, the velocity response criterion was

judged to be a more important than the damping criterion. Section

6-3 lists the order and importance of satisfying the handling

qualities criteria that was followed in this study during the

controller design.

Comparison of the responses in Figures 6-1 through 6-8 for the

conventional and thruster-augmented helicopters with implicit

model-following controllers shows that both controllers exhibit

good vertical velocity command responses. For horizontal velocity

command inputs, the conventionally equipped helicopter has

underdamped pitching motion as It accelerates horizontally away

from hover. The controller for the augmented helicopter met all
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the response criteria, and therefore provided decoupled horizontal

and vertical velocity command responses and insignificant pitch

response.

6.3 Explicit Model-Following Controller

6.3.1 Designs Without Auxiliary Propulsion

Because the previous section showed the Ricatti matrix and

closed loop matrices only for the controller design which included

auxiliary propulsion, for the sake of completeness in showing the

design synthesis the order of the previous section is reversed,

and the controller gains for the AH-IG _ auxiliary

propulsion installed are derived first.

The Q and R matrices that result in a contoller which exhibits

the desired handling qualities are

Q[i000200000°i] E 00
The steady-state Riccati matrix, P , and

1

and S are

influence matrices P
2

P
1

- [ 5.9488

-.1244

20.127

-28.65

-.1244 20.127 -28.65]

3.3042 -.3286 .75468 /

-.3286 196.53 35.77 /

.75468 35.77 943.67j

- [-5.529
P2 .05084

-19.651

L18.07

.07940 0 i1

-3.333 0

.16556 0

.39948 0

S ==

-.0172 .43669 ]

.19412 -.004041

-.0719 .4337 I
.07277 -11.224J
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The resulting gains are

r. O080E -.41785 -.0042 ]C1= -.0187

[ ooo62]c-[.oo7,._.,,,_,.,o o cC ].o=,.,_
_'"T o,,o,Ooo .o,O,o'"T

The closed-loop dynamics are x - (A-BCI)x - (BC2)x m + (BC3)d:

|-.1098 -5.6717 .256_ .17334

[.7:17 -.0195 -1.177-6.9740 1 0

+

5.1534 1.101 .00894 -.2564"

.76506 56.261 -.0006 -.0033

-.64577 -.0075 -.001 .00002

o o 1 o
uI r-oo,,,'"'"l[:oool/.3.,o_, -.oo-,8!
w,_o'-L°°r°:"l' °°°'

The augmented dynamic equation is,

[,],._[,_,Co. [:j+[':t'
and the closed-loop eigenvalues are the eigenvalues

A -_C2]. The

augmented state matrix -BC I

0

eigenvalues (A matrix) and closed-loop eigenvalues are

open- loop .1205 _.2645i

-.4411 _.1927i

closed-loop -.2911 _ 1.892i

-6.3726

-5.6767

-.40

-.33

0

0

of the

open-loop

The last four closed-loop roots are those of the prefilter (i.e.,

the model), and the first four are those of the closed-loop

helicopter, all of which are stable. Bode plots are shown in
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Figures 6-9 and 6-11. The oscillatory modes (_ - 0.15) can be

seen in the time histories, Figures 6-10 and 6-12. Like the

implicit controller for the conventional helicopter, this

controller does not meet the damping criterion but was chosen over

a controller which traded off greater damping for a longer

horizontal velocity response time-constant (the time-constant was

judged to be the more important of these two criteria for

velocity-command controllers). Figures 6-11 and 6-12 show that

the w to w response tracks the model response exactly.
= om

6.3.2 Designs Including Auxiliary Propulsion

X now has a non-zero value; the thruster is "on."
T

and R matrices are

The Q

Q[1°i°°°°i]RE2 000500 0 2000 1800

0 0 1800 2000J

0 0

The resulting controller gains are

C =
1 -.1160 -.4697 .180g .4863 ]

-.8200 -.0016 '-22.5g -36.47 i

.92S -.0273 15.45 14.28J

f

- 1,11944 .47337 0C2 1.1378 .01843 0

I
L-3.o24 .009? o

Ool "F0 C 2 / "'0082"350

L OO34 -.109

The closed-loop eigenvalues are -2.03 _+ 1.27_.. The dominant

-4,607

-6.4

-.40

-.33

0

0

mode is complex and satisfies the damping criteria (f - 0.85).

The other two roots have been driven far to the left along the
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real axis. This controller satisfies the handling qualities

criteria very well. The Bode plots and step input time histories

for this controller are shown in Figures 6-13 through 6-16. The

ability of the auxiliary thruster to reduce the forward pitch and

oscillation of the helicopter out of hover is evident in the

pitch rate/attitude time history of Figure 6-14.

The explicit controller for the helicopter equipped with

auxiliary propulsion provided u and w responses which track the

model responses very well. However, though the controller met all

the handling qualities criteria, it was not possible to design an

explicit controller which equaled the ability of the implicit

controller (for the augmented helicopter) to meet these criteria

and also to provide unnoticeable pitching motion response to a

horizontal velocity step input command.

6.3 Conditions of Acceptability for Controller Analysis

For the model dynamics of Section 6.1, the controllers of

Sections 6.2 and 6.3 were judged to be acceptable and comparable

in their abilities to satisfy the handling qualities criteria when

they met the following conditions; these conditions were evaluated

in the order given below:

O The u/u and w/w frequency magnitude responses remained within
C C

±0.I decibels of the model response from 0 to i rad/sec.

O There were no peaks in these magnitude responses, and any

valleys were confined to a i rad/sec span.
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O The u/u and w/w frequency phase responses remained within ±4
c c

degrees of the model response from 0 to I rad/sec.

O Any deviation in phase from the model was confined to -45 ° to

-I00 ° on the phase plot.

O All input-output frequency magnitude responses other than u/u
c

and w/w remained below -20 decibels for at least 5 rad/sec of the
=

0-6 rad/sec bandwidth and below -I0 decibels over the entire band.

O The time response of u to a step input in u and w to a step in
C ,.,

w remained within ±10% of the time responses of the model to
C

these same two inputs over the 5 second history.

O The coupled responses, u to w and w to u , were confined within
c c

±0.05 ft/sec from zero over the 5 second time history.

0 Closed-loop eigenvalues were confined to the 0-6 rad/sec

bandwidth.

O The damping criterion (_ a 0.5) was satisfied as long as it did

not result in a system which violated any of conditions above.

For both the implicit and explicit controllers without auxiliary

propulsion, this criterion could not be met. This suggests that

satisfactory damping using these controller structures is only

possible when auxiliary propulsion is employed.

O Pitch rate and pitch attitude time history responses were

minimized while adhering to the conditions above.

6.5 Selecting Controller Weighting Matrices

The elements of the Q and R matrices are parameters which must

be chosen to yield a controller which provides the desired

closed-loop properties. The following rules of thumb for

selecting appropriate weighting matrices resulted from the
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development of the controllers outlined in this study. Many of

the rules discussed below are clearly se_n in Figure 6-17, which

plots root loci for the explicit controller (auxiliary propulsion

installed) of Section 6-3 for various weighting matrices.

O In general, the diagonal elements dictate the dominate response

characteristics of the system. A few off-diagonal terms may

occasionally be used to refine some aspects of the response, as

discussed below.

O The [i,I] and [2,2] elements of Q weight the u and w responses.

They were varied independently to achieve the desired frequency

magnitude and phase responses and time history responses. The

magnitude of these elements varied from one controller to the next

(from 20 to I0,000 in the examples in Sections 6.2 amd 6.3) and

from one trim point to the next, but their influence in the

frequency and time responses was easily discernible, so that the

correct order of magnitude was quickly determined. These two

weights affected only the response of their corresponding state

variables, and once the correct order of magnitude was determined,

changes within this order had virtually zero effect on the

eigenvalue locations. These two parameters alone provided the

desired decoupled velocity-command responses.

O The [3,3] and [4,4] elements of Q showed little influence in the

responses, except for the augmented helicopter's implicit

controller. Occasionally, a unity weight was assigned to these

elements to reduce pitching motions. For the implicit controller,

at many trim conditions it was imperitive to weight the [1,3],

[1,4], [3,1], and [4,1] elements of Q to reduce excessive
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responses in q and 8 to u inputs. Once the [I,i] element was
com

determined, these elements were found to be less than or equal to

the [I,I] element.

O The control weighting matrix, R, effectively controls the pole

locations of the less dominant poles. In general, R did not

strongly affect the dominant roots, and therefore it did not

strongly influence the frequency and time responses of the system.

In those cases where this influence was observed, the implicit

controller was more susceptible to changes in the state responses

from increasing R than was the explicit controller.

O The unity matrix was a good choice for R. When (a) pole(s) were

out of bounds of the 6 rad/sec frequency band, one or more of the

diagonal elements of R was increased to pull the pole(s) back in

bounds. A few tries showed which elements influenced which poles,

and the magnitude of the proper element was adjusted to properly

place the pole; often the poles were effectively placed by simply

assigning the same scaling factor to all elements.

O For the auxiliary thrusted helicopter, assigning a positive

weight to the cross-coupled elements of R for the longitudinal

cyclic and auxiliary thruster (elements [2,3] and [3,2]) provided

an easy means of increasing the damping ratio of the dominant

complex roots. The value of this weight was equal to or slightly

less than, but of the same order of magnitude as,the smaller value

of the [2,2] and [3,3] elements.
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Numbers refer to the pairs of Q and R matrices.

"x" denotes the helicopter's open-loop roots.
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Chapter VII

SELECTED NOE TRAJECTORIES

Three representative longitudinal NOE maneuvers are defined

in this chapter. The optimal control input histories for each

maneuver are determined us ing the trajectory optimization

algorithm. These trajectories, or maneuvers, are used in Chapter

VIII to evaluate the controllers developed in Chapter VI, and to

evaluate the use of longitudinal auxiliary propulsion.

The collective and longitudinal cyclic ranges of stick travel

for the AH-IG are [i]:

# : 0 to 10.7 inches B : -7.5 to 5.7 inches
c is

7.1 Pop-up/Dash/Descent

This maneuver, shown in Figure 7-1 is employed primarily when

moving from one hiding point to the next. For example, the

helicopter, hidden by tree cover, ascends above tree height,

dashes across the tree-tops, and descends back to hover in a new

clearing. The maneuver is done in minimal time.
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Figure 7-1

With auxiliary propulsion installed, the minimum time in which

the maneuver can be effectively completed is 4.6 seconds. Table

7-1 shows the specified values of the states at the interior and

final point times, the trim states, the available control power at

this trim condition, and the cost function weighting matrices.

The specified control values (of the controls in the augmented

state vector) at interior and final points are arbitrary since the

corresponding weighting elements are zero; the weights _ be

zero since we do not want to penalyze control excursions.
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interior and final points

time u w q 8 8c

sec ft/s ft/s deg/s deg/s in

aux prop]

off,on J

BI T AX

in in f t

1.25,1.25 0 0 0 0 0 0 0

4.80,3.60 0 0 0 0 0 0

5.90,4.60 0 0 0 0 0 0

0 30

0 60 30

0 60 0

AY

ft

trim conditions

U W Q _ O* B* T*
o o o o c Is o

o o

ft/s ft/s deg/s deg in in in

1.69 -0.02 0 -0.73 5.3 -.39 0

X
o

ft

0

Y
o

ft

I0

cost function weighting matrices

state" diag [0 0 4O0 4OO 0 0 0 0 O]

control: diag [I I i]

state- control : null matrix

interior point weighting matrices

diag [150 0 4o0 40o 0 0 0 iso 150]

final point weighting matrix

diag [150 150 400 400 0 0 0 150 150]

control power (inches)

8 : -5.s, +s.4 B
c la

: -7.1, +6.1 T: -5, +5

"8 and B refer to stick trim; corresponding awaahplate trim

c is
o o angles are 14.83 and -.76 degrees.

AY Is defined positive upward

Table 7- I
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Figures 7-3, 7-4, and 7-5 show the spatial position and

position histories, velocities, and control inputs for a

conventional helicopter performing the pop-up maneuver. Figures

7-6, 7-7, and 7-8 show the sameplots for the auxiliary propulsion

equipped helicopter.

Auxiliary propulsion is a major advantage in this type of

maneuver. The conventionally equipped helicopter has large

nose-down attitudes; after one second of vertical climb, the

helicopter pitches nose down to accelerate; the attitude returns

to trim during deceleration (Figure 7-4). The path that the

helicopter takes during the second half of its trajectory is not

as square as it is for the augmentedhelicopter. "Cutting the

corner" off this path is necessary to avoid excessively high pitch

attitudes. If a more square path is desired, the forward speed of

the helicopter must be further reduced before descending; this

will, of course, increase the total time to complete the maneuver.

This maneuver is a high agility task. As one expects, we find

that the stick motions span their entire ranges (Figures 7-5 and

7-8). Comparing these two figures shows the impact of the

auxiliary thruster. For the conventional helicopter, the

longitudinal cyclic saturates at its maximumduring the dash, and

then is pulled back strongly for the deceleration. For the

auxiliary thrusted helicopter, the thruster saturates for

acceleration and deceleration, and the amount of cyclic is

reduced. The collective saturates for the thrusted helicopter

because the maneuver is performed more quickly.

The pitch attitude for the conventional helicopter is more

extreme than for the augmentedhelicopter. The pitch rates for
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both cases are understandably high, but fall within the acceptable

limit of 0.69 rad/sec2: 0.56 for the conventional helicopter, and

0.49 for the augmentedhelicopter.

7.2 Bob-up at 40 knots

The bob-up entails "hurdling" an object

a moderate to high speed, as shownin Figure 7-2.

while flying at

40 knots

Figure 7-2

Table 7-2 specifies the geometry and flying qualities for this

maneuver. Both the conventional and auxiliary-equipped missions

are accomplished in 2.5 seconds.
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interior and final points

time u w q 8 8c BIs T ZIX AY

sac ft/s ft/s deg/s deg/s in in in ft ft

.uxprop]
off,on J

1.0 ,1.O 0 O 0 0 0 0 0 0 20

1.5 ,1.5 0 0 0 0 0 0 0 0 20

2.5 ,2.5 0 0 0 0 0 0 0 0 0

trim conditions

U W Q 8 8* B* T* X Y
O O O O C lS O O O

O O

ftls ftls des/s deg in in in ft ft

67.48 -2.13 0 -1.81 3.75 -.04 0 0 i0

cost function weighting matrices

state: dias [150 o 400 400 o o o 150 0]

control: diag [i I I]

state -control : null matrix

interior point weighting matrices

dia8 [150 0 400 400 0 0 0 150 150]

final point weighting matrix

diag [150 150 400 400 0 0 0 150 150]

control power (inches)

8 : -3,7, +10.0 B
¢ Is

: -7.5, +5.7 T: -5, +5

I

8 and B refer to stick trim; correspondin8 Iwashplate trim
c ls

o o ansles are 12.77 and -.i0 dasrees.

_ is defined positive upward

Table 7-2

Figures 7-9, 7-i0, and 7-II show the spatial position and

I08
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position histories, velocities, and control inputs for a

conventional helicopter performing the bob-up maneuver. Figures

7-12, 7-13, and 7-14 show the same plots for the auxiliary

propulsion-equipped helicopter.

Both the conventional and augmented helicopter were constrained

to remain very near their trimmed horizontal velocity; this was

effectively accomplished. The use of auxiliary propulsion_

decreases the amount of cyclic required; therefore, the pitch

attitude for the augmented helicopter at the end of the maneuver

is slightly less than the attitude for the conventional helicopter

(the attitudes are well within the acceptable range). In either

case, the pilot would have to reduce the pitch attitude at the end

of the maneuver (alternatively, we could have weighted the

constraint on the final pitch attitude more heavily). There is no

time advantage in using auxiliary propulsion here. There is a

slight advantage in reducing the pitching motion during the

maneuver.

In both cases, the vertical velocity, W, is almost perfectly

symmetric about its trim level over the interval, that is, it

increases smoothly then decreases smoothly back to trim. The

collective is increased, then decreased below its trim value to

retard the vertical ascent, then increased above trim for the

final half second to slow the descent speed to zero.

The maximum pitch rate never exceeds the 0.69 rad/sec 2 limit;

the maximum rates (absolute value) are 0.27 and 0.4 rad/sec 2 for

the conventional and augmented helicopter, respectively.
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7.3 Glideslope

The glideslope is typically associated with descending from a

moderate to high-speed cruise at an altitude of several hundred

feet to a near-earth hover. The glideslope to ship deck landing

is a common trajectory employing the glideslope. This study uses

a very simplified glideslope. No particular glideslope path or

angle is specified; the maneuver simply requires transition from

flight at 40 knots and 250 feet altitude to a near-earth hover 250

feet along the horizontal earth axis.

Table 7-3 specifies the geometry and flying qualities for this

maneuver. Figures 7-15, 7-16, and 7-17 show the spacial position

and position histories, velocities, and control inputs for a

conventional helicopter performing the glideslope maneuver.

Figures 7-18, 7-19, and 7-20 show the same plots for the auxiliary

propulsion equipped helicopter.

The advantage of using auxiliary propulsion is evident in

trying to fly the glideslope in minimum time while not exceeding

the pitch attitude limits. The maneuver takes one second longer

for the conventional helicopter than for the augmented helicopter

(7 versus 6 seconds), and the pitch attitude is worse. In fact,

as can be seen in Figure 7-16, the nose-up pitch attitude for the

conventional helicopter at the end of the glideslope is not

favorable; it exceeds the i0 ° limit. The spacial histories are

nearly identical, as are the translational velocities histories,

so the thruster provides the ability to rapidly decelerate while

maintaining satisfactory attitude.

The maximum absolute pitch rates over the trajectory are well

within the allowable range, as should be expected. These values

ii0



are 0.22 and 0.17 rad/sec2 for the conventional and augmented

helicopter, respectively.

interior and final points

time

eec

off,on J

7.0 ,6.0

u w q 8 8c B1s T AX AY

f_Is ft/s degls degls in in in ft ft

-67.5 2.13 0 0 0 0 0 0 -250

trim conditions ._

U W Q O 0 T* X Y
o o o o c le o o o

o o

ftls ftls degls deg in in in ft ft

67.48 -2.13 0 -1.81 3.75 -.04 0 0 250

cost function weighting matrices

state: diag [0 0 400 400 0 0 0 0 O]

control: diag [I I I]

state-control: null matrix

interior point weighting matrices

not applicable

final point weighting matrix

diag [150 150 400 400 0 0 0 150 150]

control power (inches)

e • -a.7, +io.o B
c Is

: -7.5, .+5.7 T" -5, +5

*e and B refer to stick trim; corresponding swashplste trim

c is

o o angles are 12.77 and -.I0 degrees.

t.

_Y is defined positive upward

Table 7-3
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7.4 Example of Path Evolution using the Trajectory Optimization

Figure 7-21 shows three "paths" during different stages of the

trajectory optimization for the pop-up/dash/descent maneuver (with

auxiliary propulsion). The initial control history yields a path

that is very far from the desired trajectory. As the cost is

minimized, the geometric specifications are met, as are the flying

qualities criteria. The optimization of the other trajectories of

this section converge similarly to their optimal path.
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Chapter VIII

EVALUATION OF IMPLICIT AND EXPLICIT CONTROLLERS

The three maneuvers used for evaluation in this chapter are

those maneuvers which were defined in Chapter VII. The optimal

control input histories and state histories for these maneuvers

(Chapter VII) are referred to often in the following discussion of

the pilot command input histories.

8.1 Pop-up Maneuver

The pilot input histories for the implicit and explicit

controllers are shown in Figures 8-1 and 8-2, respectively, for

the conventional helicopter, and in Figures 8-3 and 8-4 for the

helicopter equipped with auxiliary propulsion. A summary of the

pilot workloads for this task is contained in Table 8-1.

8.1.1 Without Auxiliary Propulsion

For the implicit controller, the command inputs are choppy, and

definitely coupled. Both stick motions reverse direction several

times throughout the trajectory, and the rates of change are

appreciable. Therefore, the pilot workload is very high. The

explicit controller's command inputs are smooth. The vertical

velocity command rises and then falls back to trim, in accordance

with the desired shape of the pop-up and descent. The horizontal

velocity command increases for the dash portion of the task,

though it seems to remain unusually high at the end of the

trajectory.
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8.1.2 With Auxiliary Propulsion

The implicit controller, a@ for the case above, should be

judged unacceptable. The explicit controller again accepts

smooth, low pilot workload inputs. The horizontal velocity

commandthis time, however, seemsunusually low over the entire

trajectory (Figure 8-4), especially considering the amount of

positive cyclic and thruster input used throughout the maneuver

(Figure 7-8).

8.2 Bob-up Maneuver

The pilot input histories for the implicit and explicit

controllers are shown in Figures 8-5 and 8-6, respectively, for

the conventional helicopter, and in Figures 8-7 and 8-8 for the

helicopter equipped with auxiliary propulsion. A summaryof the

pilot workloads for this task is contained in Table 8-1.

8.2.1 Without Auxiliary Propulsion

The implicit model-following controller requires pilot inputs

(Figure 8-5) that are not distinctively different from the

swashplate inputs (Figure 7-11); there is a lot of movementin

each stick, as witnessed in the commandinputs and the rate of

commandinputs. Consequently, the pilot workload is relatively

high. Furthermore, we notice that this controller has not

decoupled the translational velocities very well.

The explicit model-following controller, on the other hand,

shows excellent controller characteristics. Figure 8-6 plots the

pilot inputs using this controller. The vertical velocity input

133



is a very smooth bell-shaped curve. This commandinput reflects

the curvature of the trajectory and the vertical velocity history

(Figures 7-9 and 7-10); that is, the vertical response to the

vertical commandinput is direct and predominately uncoupled. At

the completion of the maneuver, when the helicopter is at its trim

altitude and cruise speed, the W stick has been returned to its
= om

trimmed location. Only minor horizontal velocity compensatory

command is necessary, and this input is also very smooth.

These smooth pilot inputs result in very low pilot workloads

(see Table 8-1). The ability of the explicit controller to accept

smooth inputs, mix them, and output the necessary "choppy"

swashplate and thruster histories is quite pleasing.

8.2.2 With Auxiliary Propulsion

There is very little change in the pilot input histories for

the thruster-equipped helicopter (because very little thruster

power is needed to meet the specifications of this maneuver). The

same results concluded above apply to this controller.

8.3 Glideslope Maneuver

The pilot input histories for the implicit and explicit

controllers are shown in Figures 8-9 and 8-10, respectively, for

the conventional helicopter, and in Figures 8-11 and 8-12 for the

helicopter equipped with auxiliary propulsion. A summary of the

pilot workloads for this task is contained in Table 8-1.

8.3.1 Without Auxiliary Propulsion

The swashplate inputs for this maneuver are somewhat choppy

(Figure 7-11). The pilot inputs for the implicit controller are
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also choppy, whereas the explicit controller accepts smooth

inputs. The smoothness of these inputs for the explicit

controller, and the relative simple nature of this task results in

very low pilot workload.

8.3.2 With Auxiliary Propulsion

Again, the implicit controller does not provide good controller

characterisitics. The explicit controller is very _ood; the pilot

histories differ from those above only in that the vertical

velocity command at the end of the trajectory becomes positive to

curtail the high descent rate which was made possible via the

auxiliary thruster.

In all of the cases presented above, the pilot workload for the

explicit controller is considerably less than the workload for the

implicit controlle The difference in workloads between

maneuvers is attributed to the relative degree of agility inherent

in the maneuver.

Both controllers exhibited good frequency responses. It

appears, therefore, that the explicit controller was able to

accept smoother pilot inputs because of its use of a prefilter.

The explicit controller attempted to match the actual and model

state histories, whereas the implicit controller attempted to

match the sta_e ra_e histories; state rate matching required that

the pilot input histories were similar to swashplate inputs so

that the integrated state rates resulted in the correct state

histories. Since the explicit controller matched state histories,

the pilot inputs were required to satisfy the in_eErated model
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dynamics, and

proportional to

resulted in commands

the desired velocities.

that were smooth and

Maneuver/

Aux Prop,

Controller

Pop-up/Off

Implicit

Explicit

Pop-up/On

Implicit

Explicit

Bob-up/Off

Implicit

Explicit

Bob-up/On

Implicit

Explicit

Glideslope/Off

Implicit

Explicit

Glideslope/On

Implicit

Explicit

Pilot

Workload

Cost

, 0
COff_ COm

23 550

8 85

22 126

7 52

21 140

12 44

18 66

I0 32

I0 19

2 31

C

357

357

331

331

238

238

171

171

176

176

162

162

Open-loop

Control

Cost

is

526

526

232

232

190

190

74

74

NA

NA

336

336

NA

NA

65

65

NA

NA

133

133

4 60

4 21

135

135

Normalized

Cost

, 0
COm COm

C IS

NA NA

NA NA

.09 .74

.05 .23

NA NA

NA NA

•06 .14

.01 .23

108

108

NA NA

NA NA

Table 8-i
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Chapter IX

CONCLUSIONS AND RECOMMENDATIONS

Implicit and explicit model-following controllers have been

investigated for use with the longitudinal degrees of freedom of

an attack-type helicopter operating in a NOE environment. A

computational trajectory optimization method was employed to

evaluate these controllers, and to access the advantages incurred

using auxiliary propulsion on helicopters operating in this

environment. The auxiliary control power was sized according to

desired acceleration potential. The contollers and longitudinal

propulsion advantages were judged in terms of their resulting

handling qualities, flying qualities, and pilot workload.

A velocity-command controller, with decoupled command inputs,

is preferred for these types of NOE tasks, which typically require

high levels of helicopter agility. The explicit model-following

controller uses a prefilter of model dynamics in the feedforward

loop of the controller. This controller was superior to the

implicit model-following controller in all cases tested, and was

much easier to design because the same Q and R matrices were

applicable for all trim conditions. Both could be designed to

satisfactorily meet the prescribed handling qualities criteria

using primarily diagonal weighting matrices. The explicit

controller, however, required far less pilot workload. The

explicit controller's command inputs reflected the direction,

duration, and relative magnitude of the desired horizontal and
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vertical velocity responses. This was true for the conventionally

equipped helicopter, and for the thruster augmentedhelicopter,

where the two commandinputs were effectively mixed to provide

inputs to the three helicopter controls (collective, cyclic, and

thruster).

The auxiliary propulsor is very effective for NOEoperations

because (i) it increases the acceleration/deceleration potential

of the helicopter, thereby decreasing the time to complete the

task, and (2) the thruster-generated acceleration does not require

excessive pitch motion, which is detrimental for navigation,

target acquisition, and hiding.

The trajectory optimization method provides a straightforward

and efficient way to determine the optimal control input

histories, which can be employed to then evaluate attributes of

various controllers, propulsion systems, and perhaps other

components of the helicopter. This study uses a soft constraint

on the helicopter's pitch attitude and pitch rate. In retrospect,

it may be more effective to use a hard constraint so as to

absolutely limit the rate and attitude. In the current method,

early stages of the optimization may yield rates and attitudes

which are definitely unacceptable, and extreme attitudes may lead

to divergence of the optimization.

The controller gains are scheduled throughout the flight

envelope. This is necessary to account for changes in the flight

condition throughtout the trajectory. However, some gains change

very little with flight condition, and some have negligible

influence. This, in fact, was verified during early stages of

this study, when the gains at the trimmed condition were used
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throughout the entire trajectory. Therefore, further work in this

area should be directed to correlating the most influencial gains

with flight condition, and scheduling accordingly. For

implementation in the aircraft, this will be necessary to reduce

computational storage and real-time processing, and expense.
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Appendix A

Helicopter Equations of Motion

The most basic starting point in developing the dynamic

equations of motion for the helicopter (or for any body) is to

apply Newton's Second Law to the forces and momentsacting on the

helicopter, as described in reference 23. The helicopter is

assumedto be a perfectly rigid body. Using a body-axis reference

frame (Figure A-l), this yields the six degree of freedom

expressions for helicopter motion. These equations relate the

translational and angular accelerations to the aerodynamic,

inertial, and gravitational terms. This study is concerned with

the longitudinal equations of motion, and therefore the

lateral-directional motion equations are not presented.

Other assumptions employed in this derivation are that

i. the helicopter has constant mass and mass distribution.

2. the helicopter is flying at speeds low enough and

distances short enough that the Earth can be considered

flat; the body-axis frame then need not be related to

rotation about the Earth's geocenter, and the inertial

reference frame is therefore the flat Earth axis.

3. quasisteady flow applies.

The dynamics of the helicopter are presented in a body-axis

frame. This is an axis system affixed to the body (Figure A-l).

The XB axis is forward through the nose of the helicopter; YB

points out the right side; and Z points _ through the body of
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the helicopter. P, Q, and R designate rotational rates about the

XB' YB' and Z axes, respectively. The origin of this axis system

is the helicopter's center of gravity. The XZ plane is assumed to

be a plane of symmetry. Figure A-I also shows the

Earth-reference_ frame: X I points right; YI points out of the

page: and Z I points in the gravity (g) direction. Typically, it

is necessary to consider the inertial to body transformation

matrix which relates these two reference frames. _owever, since

we are dealing only with the linearized longitudinal motion

equations, it is more succinct to state the simple result of the

transformation linearization than to develop the transformation

which is, for the most part, unused. (The result, q-_, is

included and explained below with the linearized longitudinal

equations of motion).

The nonlinear longitudinal dynamic equations of motion are

- m(U + QW - RV + gsinS) - ma (A-la)
X

Z - m(W + PV - QU gcos@sin@) _ ma (A-Ib)
Z

= QI + PR(I -Iz) - R21 + P21 (A-ic)
y X XZ X Z

m is the mass of the hel_copter. Subscripted I and a are the

moment of inertia and acceleration, respectively, along the axis

(or in the plane) of the subscript variable. The equations

represent the balance between the inertial and gravitational

terms, and all aerodynamic and propulsive terms represented by the

generalized symbols 4, Z, and M.

Since only the longitudinal degrees of freedom are of interest,

these equations are rewritten without their lateral-directlonal

terms (the lateral-directlonal terms are set to zero):
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- m(0 + QW + gsine) (A-2a)

E = m(W - QU gcose) (A-2b)

- ¢I (A-2c)
Y

These nonlinear equations are linearized by accounting for

dynamic motion as small perturbations about an operating, or trim,

point. The subscript ( ) denotes trim.
O

We write the total

motion of each state as the sum of its trim value plus its

perturbation value, i.e., we take the first two terms in a Taylor

Series expansion.

U = U + dU = U + u _ = X + dX = X + X
O O O 0

W = W + dW - W + w 2[ - Z + dZ - Z + Z
0 0 0 0

Q = Q + dQ = Q + q M = M + dM - M + M
O O O O

(A-3)

e = o + d_ = 8 + e
0 0

In trim, nominal translational and rotatione I accelerations are

U W 0.zero: - = q = ±nerezore,
o O o

U = U + u - u W - W + w - w Q = Q + q = q (A-4)
O o O

and the trim equations are

X = m(Q W + gsin8 ) (A-5a)
0 O0 0

Z - m(Q U - gcos8 ) (A-5b)
0 0 0 0

M - 0 (A-Sc)
O

Rewriting Equations A-2 using Equations A-3 and the derivative of

Equations A-4,

X + X - m[u + (Q +q)(W+w) + gsin(e +e)]
0 0 0 0

- m[u + Q W + Q w + W q + qw + gsin8 cose + gcose sin0]
0 0 0 0 0 0

(A-6a)
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Z + Z = m[w (Q +q)(U +u) gcos(8 +8)]
0 0 O 0

= m[_" - Q U - Q u - u q qu - gcos8 cos8 + gsin8 sinS]
0 0 0 0 0 0

(A-6b)

M + M = ql (A-6c)
o y

This linearization technique assumes small perturbations, so

that a small angle approximation is used: cos8 m I and sin8 s 8.

We also assume the products of perturbation variables are

negligible. Using these two approximations, Equations A-6 are

X + X = m[u + Q W + Q w + w q + gsin8
O O O o O O

Z + Z = m[_, - Q U Q u - U q - gcos8
O O O O O O

M +M=ql
o y

Subtracting the trim expressions, Equations A-5,

A-7 yields the linearized (perturbation) equations:

X = m[u + Q w + W q + gcos8 8]
o O O

Z m[_' Q u U q + gsin8 8]
o O O

M= qI
Y

+ gcos_ 8] (A-7a)
O

+ gsin8 8] (A-7b)
O

(A-7c)

from Equations

(A-8a)

(A-8b)

(A-8c)

X
or - = 6 + Q w + W q + gcos8 8 (A-9a)

' m o o o

= w - Q u - U q + gsin6 8 (A-9b)
m o o o

= q (A-gc)
I
y

Recall that X, Z, amd M represent the perturbation aerodynamic and

propulsive forces and moment.

The linearization of the inertial/body transformation yields

the simple expression q-8. This means that pitch attitude, 0, is

the direct integral of pitch rate, q. Thus, the independent

perturbation variables in the longitudinal degrees of freedom are
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0 0 0 0

- m[_" - Q
0 0

Q u - U q - qu - gcos6 cos6 + gsin_ sin6]
0 0 0 0

(A-6b)

M + M = ql (A-6c)
o y

This linearization technique assumes

that a small angle approximation is used:

small perturbations, so

cos8 _ I and sin8 _ _.

We also assume the products of perturbation variables are

negligible. Using these two approximations, Equations A-6 are

X + X - m[u + Q W + Q w + W q + gsin8 + gcos8 (A-7a)
0 0 0 0 0 0 0

Z + Z - m[w - Q U Q u - U q - gcos8 + gs 8]
0 O0 0 0 0 0

(A- 7b)

M + M = ql (A-7c)
Y

the trim expressions, E( A-5, from Equations

A-7 yields the :arized (perturbatio equations :

X = m[u + Q w + W cos_ 8] (A-8a)
O o o

Z = m[w - Q u - U q + (A-8b)
o O

M = ql (A-Sc)
y

X
or, - = u + Q w + W + gcos8 # (A-9a)

m o o

Z = w Q u q + gsin# 8 (A-9b)
m o o o

_M- _. 9°)
I

y

Recall that X , amd M represent the perturbation aerodynamic

!
propulsive forces and moment.

The linearization of the inertial/body transformation yields

the simple expression q=8. This means that pitch attitude, 0, is

the direct integral of pitch rate, q. Thus, the independent

perturbation variables in the longitudinal degrees of freedom are
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u, w, and q. With this in mind, we express X, Z, and M in terms

of their sensitivities to changes in these independent state

variables, and to changes in the longitudinal perturbation

controls 8 and B (collective and cyclic, respectively):
c Is

ax ax ax _x OX

X - _-_u + _-_w + _q + 8-_-0c=+ 8-_1 B1s
(A-10a)

az az 8Z az 8z
Z - _u u + _w + _q + 8-_-0c + a--_---B1s

c Is

(A-lOb)

aM aM aM aM aM

M - _-_u + _w + _-_q + a--_-Oc+ a--B-_-1B1s
c $

(A-lOc)

Dividing the force equations (X

equation (M) by I , the the resulting coefficients
Y

variables are what are

derivatives, and the

derivatives.

and Z) by m, and the moment

of the state

commonly referred to as the stability

control coefficents are the control

X I 8X 1 aX 1 aX 1 ax

m m a--uu + -- + -- _q + + --- " m _-_w m m a--_-eo
=

-Xu+Xw+X q +X8 e +X B
u w q BI_ Is

Z 1 8Z 1 8Z 1 8Z 10Z
m'_u+_w +_q + m a-7-°c+

c

- Z u + Z w + Z q + zBce + z B
u w q c BIs Is

i ax
.B

m aB is

I az
B

m 8B I,
Is

(A-lla)

(A.1ib)

M I OM i 8M i 8M I aM

y y y y y c

i 8M
B

I @B is
y is

- M u + Mww + M q + M e e + M B
u q c c Bls is

Equating Equations A-9 and A-II, collecting like

rearranging, yields

u - X u + (X -Q )w + (X -W )q
u w o q o

(A-llc)

terms and

gcose e + xe=e + x Bo c Bls Is

(A-12a)
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w - (Z +U )u + Z w + (Z +U )q
o o w q o gsin6 6 + Z 0 # + Z Bo c c Bls Is

(A-12b)

- M u + M w + M q + M 8 8 + M B (A-12c)u w q c c Bls Is

Writing Equations A-12 in matrix form, and including the dynamics

for _, we have a general expression for the linear longitudinal

dynamics of the helicopter:

u

w

X

Zu+Q o
a=

M
u

0

Xu-Qo X -W -gcos#q o o

Z Z +U -gsin_ °w q o
M M 0
w q

0 I 0

u

w

q

8

+

.

Xoc XB1s

Zsc ZBI s

MS= MBI'

0 0

(A-13)

This matrix equation takes the form

- Ax + Bu

where A is the stability derivative matrix,

derivative matrix, x is the state vector, and

vector.

B

u

(A-14)

is the control

is the control

X R
u [e]w u = B

S

q

0
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w = IL +u )u * L w . iL +u )q - gsln_ _ + _8 u
o q o o cc

* g D
B1s Is

(A-12b)

q = M u + MwW + M q + + M Bu q M8c8c Bls is
(A-12c)

Writing Equations A-12 in matrix form, and including the dynamics

for e, we have a general expression for the linear longitudinal

dynamics of the helicopter:

•u " X X -W -gcOSeo" " u ]; u Xu'Qo q o ,

w ! Z +Q Z Z +U -gsin8 w
[ _ u o w q o o I

q'_= M M M 0 ql

w 0 0j

N / zeo z_,l

+_+ l M6c/_ L - a

/k

x-Ax+ Bu /

where A is the _lity _derivative_trix, B

derivative m_x, x is the state vectoNnd u

vector. ///" xk_

X

U

wl

ql
el

d

[e]U - B
s

(A-13)

(A-14)

is the control

is the Control
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Appendix B

AH-IG Stability/Control Derivatives

(.;_#_:CC;AL

02 ............

and Scheduling
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Scheduling

The stability and control derivatives were scheduled according

to the flight velocities U and W. Modal analyses [3,27] showed

that the derivatives X X , X , Z , X , and M , and
u' w q q BIs BIs

variations in these derivatives, did not significantly affect the

open-loop dynamic characteristics of the AH-IG. Thesefore, the

average value of each derivative over the twenty-two trim

conditions listed in Reference 1 was used throughout the entire

flight envelope (see data above).

The remaining stability and control derivatives were scheduled

in a two-dimensional format by first curve-fitting the derivatives

with respect to U, and then with respect to W. That is, they were

scheduled as functions of U and W. Curve-fitting was either

linear or quadratic, and the function for one derivative may have

been composed of several distinct curves; all functions were

continuous for all U and W.

These non-constant derivatives were easily scheduled as

functions of U by fitting curves to the data points. This method

was also employed for scheduling with respect to W, except for the

M M M , and Z derivatives. Because these derivatives varied
U' W' q w

considerably for different values of W, and because of the limited

data set, curve-fitting was not directly possible. To facilitate

scheduling, the effect of flight condition on these derivatives

was rationalized by examining the equations that describe them in

terms of their contributing aerodynamic forces and moments. By

rationalizing the effects of flight velocities on rotor inflow,

rotor angle of attack, thrust coefficient, and rotor flap, and

161



then looking at their effects on the derivatives, the derivatives

were written as functions of U and W.

, q
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Appendix C

Solution of the Steady-state Riccati Equation

optimal controller. The diagonal modal

eigenvalues of Z with positive real parts.

as

Reference [26] provides a detailed description of the following

diagonalization procedure for solving the steady-state Riccati

equation.

The equation has the form P- -PM -MTP + PNP + K and a

solution is sought for P at steady-state, i.e., when P - O. M, N,

K, and P have dimension n x n.

Define the 2n × 2n matrix

Z-[ _ "N]K -MT

It is assumed that Z has 2n distinct eigenvalues. For each

eigenvalue A, there is an eigenvalu_ -_; none of the eigenvalues

have zero real parts. The eigenvalues of Z which are negative

(stable) , are the eigenvalues of the steady-state closed-loop

matrix A contains the

Z can be diagonalized

Z - W[ A0 -A0 ]W-I

Partitioning W into n x n submatrices, w[ww1-- 11 12 ,

W21 W22

the steady-state solution of the Riccati equation is

P-W W -I
22 12
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Controller

Appendix D

Gains at All Trim Points

ORIGINAL PAGE IS

OF POOR QUALITY

Trim numbers correspond to those in Appendix B. Numbers in the

"Q" and "R" columns refer to the number which designates the Q and

R weighting matrices used to develop the controller; these

numbered matrices are listed at the end of the appendix.

Implicit Controller -- conventional helicopter (no auxiliary prop)
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Explicit Controller -- conventional helicopter (no auxiliary prop)
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"2. E2 _""4

"4Z "4

"E,, 04Z -4

"E.. ,,:'E:E "E

"2.E:IE -E

"I.3?:-E

"9.3IZ -?

0"?

"3.?5

"S.91

"E.. 7i

-E. 0 L'-

"5.33

"4. "4

"2, OE:
"3o ")0

"2,95,

°8.81

"E:.C,

"4. i6

-4.2

"3,32

"2.dz

"5.2E

- _, r, .-

"7.._

"E.47

(. 07 ._

-0,02SE

"0.601

-2.45

-3.5 ?

-_, 51

"_, 42

-0 8_7

"2 Eu

-C,61

0 0801
C, 162

-"J 199

"0 522

"l 88

-I 54

"i 4-4

"C' 89

F,

-6,9:'3 i.5:-4

-6.9_ "_ '.,4!£ -4

%. B?':-5: _.5[-.=

-6, 84[-5, _,,44[-5

-2. _. -_, 4.42[-5
-2._5_': = :'=:-:

"2. ?I.;-3 7. E:_ -=

"2, .,.. : ;, ....-=.

-6.5,5_-'. 4.1Z -4

"2._'?:-3 l,39:-4

-2.?iE-- 1.2£:-4

"3.(.5£'3 ::.2EE-=

-6.._IF.-3 ;.......

-6 92:'? 3 ,',_r-=

"E,.f:E: "3 !.8:"4

-E.,?:,:--: 2.E:3Z-4

- 7:',,C,IZ -_. 5.84:"5

-3.C:,4:-_.: 4. l!E -=.

"3.,:'5E-_ 3.64:'5

"3,:)5Z ":_ .,_.4_:-5

(

<

0

c'

0

0

0

(,

_:

(

(,

0

0

0

0

(.,

0

0

0

0

#
C2 C2 C2 C3 C3 C 3 C3

3,2 3,3 3,_ I,I 1,2 2, i 2,2

I (' 0 0

2 0 0 0

3 0 C 0

4- 0 0 0

(::: ,:: A

6 0 0 0

7 0 0 0

8 0 ':? 0

9 0 0 0

I0 0 0 0

!I 0 0 0

t2 0 0 0

i3 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

t8 0 0 0

i_ 0 0 0

20 C, 0 0

21 0 0 0

22 0 0 0

-0.0245
-0. 0264

-0,0272

"0,0257

"0.0,7.5

"0,019E:

-0.O174

-0,0i44

"0.0105

-3. IE,E -3

-0.O131

-5.66E "S

"0.0251

-0.02

-0.0253

"0.0258

"0.0263

"0.0215

-0.02

-0.02! 2

"0.0221

"0.0225

-6.22Z'4 -0 010E,

-3.07Z-3 -70S_:':

0.0132 -9 $Z-_;

0.0572 "00IZ6

O.iOi -00i6S

0.0416 -0 O1E6

0.063E 0 0152

0.08.°9 0 0675

O. 124 0 125

0. 354 0 o_

0.07_1 0 6?£

0.134 0.494

7.24£'3 -0.0341

0.0264 -0.0233

-3.15E'4 -4.91E'3

"t.7!E'3 "8. t2E'3
0.0479 0.0185

0.177 0.103

0.0426 O.I01

O.03 -0.O132

0.0152 "0,0329

0.0107 -0. 0329

C,.49E

0,49S

0. 526

C'.551

0.58?

2.9E:

3.54

3.95

2.26

6.07

5.64

1,17

t.63

O.311

0.268

i.i5

t. 82

4.53

3.55

1.94

1.48
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Q RC 3
3,1

C3
3,2

2
•"- L

4

L

7 '?

E {

c [:

!? {'

i; C

i_. r,

_4 C

-- C

• - [)

2 : C

:.:2 •

{

<

r

0

C

¢.

,5

C'

C,

0

0

0
2,

C

,?

Implicit Controller --

# CI CI
1,1 1,2

7 i2

? 12

7 i2
"_ I "5

7 12

7 12

7 12

7 i2

7 12

7 12

7 i:-'-:

7 !2

7 i2

7 12

? t2
7 i2

- 12

7 !2

7 t2

7 i2

auxiliary propulsion

CI CI
1,3 1,4

It'

11

12

1 3

!4

i6

_7

le

20

2!

22

' _,4-i-; 4.2-;-_ "8.C:244

2 ,-,rt;-".:, 9.775E-3 -i.24. =

3 '",.::-:]2:" O,.,,_r"_;.,.-,_..,-2.'_:*-_,..

4 C. ::,,_102 ,3.02646 -£.. 228

= A ,',-%'.'.;, A ,",::_77 -o

6 "'"'_"-: 0.04CE5 -iO.=:

8 0. 0339"i 0.04824 "13.9
r, ,',2q,',; 0.04947 -t5.04

4.471!-- r_ Oi2;,;, -'_,.--o,E".....=.,

0.'.:,144 0.04i8i -9.42i

0.V142 0,0475S -i3.67

C'.C:'4C7_, 0.03968 "10.27

L,. v5v.,_ 0.04986 "15, 77

B.58E-3 4.164E'4 0.09156

9. 668E'3 -2.58E-3 0.06169

6.409E-3 6,949E'3 0,!C,73

5,329E-3 0.0i025 0,0702i

0.02215 0.03842 -8,955

0.026i5 0.037i6 "8.803
i ," "30 _ 40,C,3538 0.o ...... "9.i22

O.03834 O. 03923 -9. 637

"C,.0324

-C,.C,495:::

"i. 0 :-:7

-4.6,52

-3.83-'-

4, .,..".

-5. C:,:?,2

0.1 _46,

-2.585

-4.231

-3.037

"4,738

-0.r"=="_

-0.07606

4. 588E "3

0.06144

-2. 831

"2,852

-3,022

-3.03;:

169

installed

CI C I
2,1 2,2.

C:'.i979

0,2277

8.2 iiE:

0. 2007

0 1067

A A_4_¢"

0 08824

0 07C2S

0 0468i

0 043i4

0 1469

0. t396

O, 2415

O, 2488

0.19!

0.i=,-

0.07739

0.09217

O,i274

0.138i

C1
2,3

%=.60_c;E-3 "6.6.=.:

-2.7iE'3 -7.69-:

C 0i5i? -If.,'.':

0 02iE',2 -9._55

0 02724 -_ ='"_

0 03173 -8.84

0 0301 -8.468

0 0233 -IE.ll

0.04946 "15.56

0.03758 "13.:'_.,.

0.03279 "18.03

0.04388 -i9.34

"9.t53g-3 "9,264

"0.01064 -i4.73

"1.654E-3 "8,397

0,01045 -13.39

0,02584 "ii.44

0,0t791 "I0,18

0,02347 -li,4:

0.02802 -i4.22



CI C I CI C1 CI C2 C2
2,4 3,1 3,2 3,3 3, 4 i, I 1,2

4

E

7̧

D

12'

:2

14

:5

:7

2v

.-_

-:-:5,5-

-22.C2

"il,71

"2!.5_

-i?.4_

-:3.2_

-12, ?_

-i4,04

-i4.0;.

-22,¢,_

<.--, ,.=

-.2--'. i -

I.., i.

"I _, '?:

0.0 ?"-:fi5

O.0594 .:

0.063fi_

0.0765_

0.CE795

C,, I-2E2

0.13".'4

.., i 0 c ._

C'.1277

_'), 4 ._"-.,o

,,_i 4 _=,4

0.15?6

O. 1 !37

C. i234

0.05 !,'>8

C,.o4 ',:-'2

0.0776:-

C'. 0976'?

0.!3_-

,-!I=:
," aft'?

0. i!4_

"C:. 0- t,4 : '

"4. fi:491-3

C .I--"Z .1,

-7.31-S

-C. 01C:,5 :

-L:_, Ci4 3 :::

',.L..,,.__

-_'_ ,",4 '_-" _'-'

-0.03'-: i 7

-,'. 04:,,6-"

-0.0327":

-8.4'-:4! "3

-4. E,S_Z -3

"4.4¢'::_ -3

-0.0i,.42

-C.02{,2:

mo.0i9"--:?

-,',.,.":,iC.,13

-?. _77Z-3

-7. 217[ "3

12. _.:
4.23:_:

4,777

= 6,_!

_=
, ._._.

£.4

1:::.£6

i2.3'-

2': ="

29.!7

2'-:.i2

-7,C39

-1.13

10. i9

17.94

17.=S.:

9.342

-_ e.¢-_

-4,49 :.::,

"F,2_6

-8.47_.

-8.48.=

-7, _39

"8.647

-9, 54:=S

-3,556

-3. Ir_;:

-3.563

-3._;':

,".i'Sl

-7,484

-8.294

-£:. 476,

:'"">"{'7 "7Z-::

"" "=:" -6.42:-_C'. L:'_ _:._

:,. 024'.: 2 -0.02::-_

0.016-:2 -C'.05::9

-r, ",::",': '? 2.2 :4

0. 0571 ?.', i.07

0,1 -:93 6 o----

0.C'i054 "0.".'.:'_'-=--

0 r;::.',_ -4.7,i_:':

-9.7131 -:'. -3.0 :9'_,':

-0.03292 -C.034-2

-0.C:,-212i {,.714:

"0.02849 C.4._4:

0.0260_ i. 352i-_

O.r-2604 2. Ii;_::"_.

O.026C3 -2. i:-'-1-5

O.026C'4 -3.6{"." : ":

7.224E-4 -O.O:',:::,7

O.C,I9r-2 "C,.C,:-:-:7-

-r.,..,{:'934"." I.15¢.

-0.077 _ 2 O. 77':: 4

# C2
2,1

C2
2,2

C 2
3,1

q R

1

2

3

4

5

6

7

9

10

ii

ii

13

i4

15

16

17

19

20

21

22

-0,033 :,4

-0.050 _:'.:

C:'.li_

0.325?

-0,0- 39

-C,,i635

-0. i609

"0.5514

-C'.1449

"0,0628:':

-0.2276

0.0i641

O. 020i 1

-0.1041

-0.Oi5!

-0. 5458

v', 4, D.,

0.4559

-0. 5343

-0.4 fi4 ?

-{',37 :' =

-0.3.34 E
C, 4 _,r

3.2E

2.615

-r... i69

-0.529S

-r.,. IC:,l2

"0.t074

3,469

i.393

"0. 229
" 55"*

-r,.55,42

-0. 5381

"0.4105

"0,i841
._

3.66B

O,0i-'-63

0,0217.3

0,03ii;"

0 03303

0 03073

0 i336

-0 081

"0 23E',2

0 0254
-9,£'23E -3

C,. 14":3

0.i415

0.3747

0,099C,3

_- _0.__.0 ......

0.13

-7,228E -3

-8. 794E-3

0.08335

0,0i273

0,3721

0.322:

-,:::.44 ":

O.I04;

C. 06-: _*:

5.i2i: -"

-0.02_4 :-

-5. _9:

-2. 537

"2.i4"

-6. 973: -?

O, 08_: 2-"

"0o i6"-"

-0. 159

"2.51 i

"I.i24

"0.06: 4

-0,494

0.1095

0.09475

0.0B5'.:7

0.01117

-3.8£

"2. 634

2

..-.

2
2

2

2

2

2

2

2

3

3

3

2

2

2

2

3

3

3

?

iC.

i0

10

i0

10

10

10
_.-
A L.'

iO

14

14

i4

14

I(:,

iO

10

It,

14

14

14

14
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0

O

@

Explicit Controller --
auxiliary propulsion installed

# CI CI C I C1 C1 Cl
1,1 1,2 1,3 1,4 2.,1 2,2.

-0.1i£ "0.47

2 "-,.5_'5 "5.,i2

-' "i.4:-'. "3,i

4 "'-,34 "_. 92

5 "4, ,'-'7 -2. E9

6 (, t i "0. _77

? 0,i55 "0,3fi-_

'_ 0.2 ";.. 344

.- V. '-",_ _ V. _," ,'

II +':,.157 "0,i'_.£

12 0 "...... +" _'=-'

14 0.!'-'_ -(,.o;o

15 -0.624 "3.13

id -!.0" "3.i_

1£: ¢. ==-, -: 4 ,.'.,

19 0.0915 -3 if'.!

_" ," .,',_" _ "0 3_7
2" ,', "=_E -¢, ,_c.:

22 r,C,4E2 -" ";=;

"_ "+_ C. ?ST

"_. 42 ",[ . S_7

-B. Og -3.92

_,L o C. • -+

"_. 9_ "4.3;

"!0.9 "ft.73

-12,4 "_, 4

"13, ? "14,

O,{''tTL r>,_'K65

"i0 "i £. _u

-6,5_ "0. £45

"Ii.3 "2,64

0, i B7 O. ! 53

,-l_{:,.,DvT_ "C ' ' "

,[:,.0,5S$ -0.06i4

% .',,- "4. ,=,_,._ ,..,

"£.= .... _.i"

-6,7 -1.57

"0.£2

"5i.9

"4_. 7

9,5_

£.76

$,_I
"KC

w°.. -'

9.!2

£. 52

9.95

9.63

"47.

-57. e

9,E,4

76.,1

a _._.i

9.91

"i.El-:.

C'. 2:-?

i,.c3
c .:,g

7,8i

3.34

4.2.i

5, 'i'4

"0_6"_
i. 24

i_. 49

O. 655
..., -_.4t,

0.4i5

(,. 44
-(', • _-,= ;C

-0. DC_

!, _4

_. 4D

i', 04

# CI C I CI CI CI C 2
2,4 3,1 3,2 3,3 3,4 1,1

"0.0 .'-7 - 15.4 14.3

"0.4.2_ _.-:. _ 2:[.+. 9

"i, -4 2-',,5 20,6

"=.. 15 ;-:4,? li,.o

"7.44 25.3 i£,.4

0 r,;, 0

0 0 0

0 0 0
¢, 0 0

".,, 775 43,i 13

0 '-;' 0

0 0 0

C 0 0

0 0 0

"0.5_8 22.7 25.9
"4

v.6_, 29.1 :',. -
0.0975 27.3 17

0.471 35.5 14.4

0 0 0

0 0 0

(, 0 0

. ¢, 0

i -3fi,5 2,_-=
2 - 5':,. _ fi :_. 2

3 "5::,, 3 62.7

4 -48.2 _9. '_
-,= _ 5fi.15

6 - 2 '?_- 0

S ""-7? 0

9 -446 O

iC -43.5 66.2

ii -752 ¢'

12 -714 0

13 "I03 0

14 "i48 0

i5 "54.9 60.7

ifi "6'." 57.2

17 "47. i £4.9

i 8 "44.8 65.P.

19 "497 0

20 -365 0

2i -180 0

22 -133 0

OF POCR

C 1
2,3

"22, d

"_:E, '?

"i4'3

"_-7

"i .=_:i

"45,

-i0£

-l_l

"194

-49, 3

-33,

"i06

"i"_6

"Ii_

-iI =.

C 2
1,2

0,i19

2,,38

4,72

-0,0694

"0.0959

"0. li?

-0.12£

"0. _,4

"0.0791

"0.0947
"0.0202

"0.0809

O.g _

i.09

-0.17i

"0.546

-0.0473

"0.0394

"0.0356,

"0.0292

0.47 .•

3.1-

3,':

..'.+ ..,

2,7_

O. 40?

O. _'9S

O.";7-

O. _:5:-

3.13
0.40!

O. 374
0,419

0.4'::'9

3.t3

3.t3

9.14

3.13

0.4_4

0.417

0.41_

0.418

_7_



C2
1,3

C2
2,1

C2 C2
2,2 2,3

C2
3,1

I
2

4
5

{

6
C

l('
i!
i2
1 ':
14
15
i6

!.£
19
p.-
g)."

2:

r'_ A c+c ¢/ -("r ,:; +,...+ _. +l, 0 /":+ o + w

,,+ 6 +_=.,.':.= -i. 9i ',+ ''.
," (' 52. _+ "5:75 0 ,C
0 b 4 _. ! -7.75 0 0

,..= - ..... i "2.4':' -':' 9-££'3 4.42£ "="_'. E:.;-: a.07[ :: "d. ,'.....
-.,.':"..:,-S.C.."5 "3.26E -6 -6, .;'¢., "_.. m:.,..... ..':.B5r -3 5.t::',.+,."'=':-=:.

.... =" -':' '::' -4.51 ""-6. p.Tt'-_ -4..,cB-e ....... .:. ?1£'3 7, E+.EB-5
....... : 5.4. +. 5E1:-3 8,92E-5,'. ::+IB .+ "_=.{:,s]:E-6 "4.84 .......
0 C:' 60. ! O, 754 0 C'

-:-; 7q;-= -t '_:r-': "3. ...... _ 81 -.": B?.£':' 4,39E'4
....... ._ ¢/¢ =¢:=.,T.:.,,-"-5 _. t,e,r -£+ z ..... "4. +,. "2.?iE-_ i'. 29£'4
"i, aTE-5 -4,74E-T -_. si -0. _! -3.,:)5£-3 3, _6,2"5
-$. r.: ;--,<... . -2.2t£-7 ...._,. '..',:'........... .-. :,:, 2.qlE-3. 5.13E-5

0 0 52.7 "0. 396 0 0

{, 0 4 :_:.4 -0.425 0 0
,.- ,-,. .,,..=c._ C,, 0982 c,_ r).
. . ...,... u 0.458 0 C,

-2. ;":_-': -; {:,8E-6 -=" ": -i ':: -.:_ n_E- 3 =. e.,,_-c:
"2.44E-= -2. _i£ -6 -6.3.'i -1.54 -3, (:'4_ "3 4. It£-5
"2. ':;'3E-: -i,5'9["_ -7,'?" "i,14 "3,C:'SE-,7:;3,64E"5

"1. c,";:,.,... -=.. -,:.,.,..+.:'"_ "7 "£. _ _ -,",..,'::¢.. -3.05E "3 _, 461; %

-_,.{:2
-63..:
"_2, ?

-_0
-5S. .2

0
0
0
0

-66.2
0
0
0
0

-61
-57.5

-64.9

-65,::
0

0

0

0

# C2
3.2

C2
3,3

C3 C3
I,I 1,2

C3
2,1

C3
2,2

1

2
O

4

5

6
7

8

9

10

II

12

13

14

i5

i6

17

19

20

21

22

},!I'.:
e +

3,-;

4.72
-(. 06'.:;4
-0.0955

-0. ii7
-0.226
"0. E,4
"0.0791

"O.OS4T

-0. ,:)202
"0.0809

0.631

I,09
-0. i71

-C,,0473
"0. 0394
"0. 0356

-0.0292

(, 47:_::
S .,3
3ii
":. 91,
2 73
(, 409
0 39E
,"- 377
0 355

S 13

O.4C'1
C,,374
0.4i9

0,409
3.13
3,13

3.14
3,13

0.414
0,4t7
0.4!8
0.4tB

(
0
0
0

-3. £5E "5
"5, 32£-5
-6.67£'5
"7.87E "5
0

-3.73E "5
-6.39E "5

-i.47E-5

-o 93E-5
0
0
0
0

"2.78E "5

"2.44 E"5

,_ I.14
" ['C _,

l_.t t:" E 5

r, 52 -

0 48.1

"2.07E-6 "6 72
"3.26E'6 -6 ,39
"4.58I;-6 -5 33
-5.08E-6 -4 34
0 6"- !

-I,2_E'S "3 28

-9.06I;-6 -2.95
"4.74E-7 -8.81
"2.2iE-7 "8.08
0 52.7

0 48.4
0 58.2
0 59.5

-6.08E-6 "5.26
-2.81E'6 -6.$3

-2,09E-5 "1.39E'6 -7.99

"I.82£-5 "9.3iE"7 "8.47

C,.Oi B.4
",',27;-+

-I.91

-5.35

-7.75
-2.48

"4.51
"5.42
O.754

-2.8i

-4.5 E:
"0.61
"2.3E:
-0.396

"0.425
8 _0.0.$-"

0.458
"I. 88
-i. 54

-i. i4
-0.89

0

0

0
0

-2, _-r_ "':

-2.7iE-3

-2.56E-3

0

-2.89E"3
"2.71E-3

"3.05E-3

"2.91E-3

0
0

0

0

-3.Ol _ -3

"3.04E -3

"3.05E ",?
"3.05E-_
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/Q
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